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Abstract

We briefly present machine learning approaches for designing better biological
experiments. These approaches build on machine learning predictors, and provide
additional tools to guide scientific discovery. There are two different kinds of ob-
jectives when designing better experiments: to improve the predictive model or to
improve the experimental outcome. We survey five different approaches for adap-
tive experimental design that iteratively search the space of possible experiments
while adapting to measured data. The approaches are: Bayesian optimisation, ban-
dits, reinforcement learning, optimal experimental design, and active learning. These
machine learning approaches have shown promise in various areas of biology, and
we provide broad guidelines to the practitioner and links to further resources.

Key words: machine learning, adaptive experimental design, Bayesian optimisa-
tion, bandits, reinforcement learning, optimal design, active learning
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1 Introduction

Machine learning is a paradigm for deriving computational and statistical models
from observations. In the context of biological design, having accurate and reliable
predictive models of phenomena is of great importance for a variety of purposes.
For example, to predict the properties of proteins, what molecules they will interact
with, what main effects and side effect they will have in a biological system. Machine
learning has the potential to improve our understanding of biological systems, for
example to understand how the DNA sequence of different regions impacts gene
transcription and expression. This chapter describes approaches that build upon pre-
dictive models, and enable an adaptive approach to designing biological experiments
and systems. This includes applications such as designing metabolic networks that
will have desired properties, efficiently yield desired products, and retain the health
of the host organism.

There are two main reasons why machine learning is worth exploring in synthetic
biology. First, while computer modelling and in silico experimentation are hardly
new in the biological sciences, the models derived from machine learning algorithms
are often faster by orders of magnitude than traditional methods such as mechanistic
simulations [1]. Second, a growing number of machine learning techniques can
exploit knowledge extracted from data to search the space of possible solutions in
an intelligent way, rather than searching it exhaustively [2]. Put together, these two
advantages give machine learning the potential to massively accelerate progress in
synthetic biology [3].

In this chapter, we will discuss adaptive experimental design (AED) algorithms.
As the name alludes, these algorithms adapt the designs of future experiments to
the observed outcomes of past experiments. AED algorithms all consist of the same
components: a predictive model that maps observed quantities to predicted quantities,
a learning rule that uses data to update the predictor, and a design rule that uses the
predictor to design the next experiment. These components can be chained together
in a cycle and repeated to iteratively improve our desired objectives. A key choice
in AED algorithms is the objective we are trying to maximise: whether we want
to improve the actions or decisions; or whether we want to improve the predictive
model. After providing a brief introduction to predictive models, the following
section discusses two different kinds of objective functions that correspond to action
improvement and predictor improvement. The rest of the chapter describes the main
algorithmic approaches for each kind of objective.

1.1 Predictive Models and Supervised Learning

Machine learning is a powerful paradigm for model fitting and optimisation that
allows a practitioner to automatically discover a predictive model that can explain
the available data. There is a wide variety of machine learning predictors for dealing
with different types of data, and a corresponding variety of algorithms used to fit the
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Fig. 1 Anatomy of a machine learning prediction process. An observation is passed to the predictive
model. The model processes the observation based on its parameters, and outputs a prediction. The
prediction includes some estimated uncertainty. Parameters of a predictive model are estimated by
a process called ”training” or ”learning”.

models to the data. Broadly speaking, however, every machine learning predictive
model is a function that takes as input some observation (e.g. the DNA sequence
of a promoter) and outputs some prediction (e.g. gene expression strength) or deci-
sion (e.g. how to design a promoter). This generic prediction process is illustrated
in Figure 1. Note that the predictor has some parameters, i.e. numerical values that
determine the mapping from observation to prediction. For example, if the model is a
weighted sum of the inputs, its parameters would simply be the weights. Parameters
may map to meaningful notions, such as chirality or a molecular fingerprint, but may
also be numerical values with no clear meaning. Finally, predictors often output two
values: the prediction itself, and an estimate of the uncertainty about the prediction.

In the context of machine learning, the word “algorithm” is used interchangeably
both for the process of fitting a predictive model to data, as well as for the process
of using a predictive model for some purpose. In the former sense, often referred to
as “training”, an algorithm is a procedure that takes a predictor and a data set, and
iteratively updates the values of the model parameters to maximise some objective.
For a more concrete example, the data set might consist of gene promoter sequences
and their respective expression strengths. The predictor takes in a sequence and
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predicts the expression strength, with the objective being the average accuracy of
predictions.

In each iteration, the algorithm evaluates the prediction accuracy of the model for
observations (e.g. promoters) in the data set. Using a target value associated with the
input (e.g. expression strength of the promoter), the value of the objective is computed
(e.g. squared difference between the predicted and true expression strength). The
algorithm then applies a learning rule to update the model parameters, with the aim
of improving the objective. Thus the algorithm learns the values of the parameters
from data. This loop of prediction, evaluation, and parameter updates repeats until
some stopping criterion is satisfied, such as reaching a pre-specified number of loops.

After training is finished, the predictive model is ready to be used for downstream
tasks, such as predicting the yields of a metabolic network, or designing a network
that has specific properties. If the parameters of the model have some meaning that
is interpretable to an expert, conclusions may be drawn based on the learned values.
For example, if a parameter is associated with production of a specific metabolite, the
learned value can suggest a specific functional relationship between that metabolite
and the yield of desired products.

The success of the machine learning paradigm rests on the ability to learn highly
performant predictors, i.e. predictors that achieve a high value of the objective. A
predictors that provides low accuracy predictions of gene expression strength would
not be very useful in designing a novel gene promoter. A predictor that significantly
overestimates the production of a critical metabolite may result in a metabolic
network that fails to sustain the organism. It is important to remember that the mere
act of using a machine learning algorithm to derive a predictor does not guarantee the
predictor will be correct. Care must be taken to evaluate machine learning predictors
before using them, as a practitioner can make any number of mistakes that will
result in a poor predictor. Nonetheless, with proper attention to details and careful
evaluation of the results, machine learning is capable of producing highly accurate
computer models in less time and with less effort than many traditional approaches.

1.2 Nomenclature

Throughout this chapter, we use a number of terms that have different meanings in
different scientific fields. Here we clarify the meaning we intend when using each
term:

• Predictor - a machine learning tool that predicts attributes based on observa-
tions.

• Model - in the machine learning context, a mathematical representation of some
physical phenomenon, in which case we will specify it is a predictive model.
In the biology context, a model organism.

• Training - the process of fitting a predictive model to data.
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• System - a physical entity or collection of physical entities. Typically a biological
system such as a gene regulatory network, a bacterial population, a bioreactor
etc.

• A system has attributes, e.g. gene expression or transcription initiation rate. We
commonly wish to optimise one or more attributes.

• The attributes of the system are assumed to be influenced by its configuration,
e.g. the DNA sequence of a gene promoter. We seek to optimise attributes by
manipulating the configuration.

• Action - the choice of configuration of a system. E.g. choosing the DNA bases
of the promoter.

• Agent - a computer-based actor that makes decisions and carries them out. E.g.
an agent decides what the configuration of a promoter will be.

• Objective (function) - a mathematical measure for the performance of a pre-
dictor or agent, e.g. the average error in prediction of some quantity.

1.3 Anatomy of an Adaptive Experimental Design Workflow
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Fig. 2 The machine learning workflow for adaptive experiment design. Raw biological data is used
by a model to make predictions, which then guide the design of the next experiment. The result
of this experiment is added to the data, which is then fed back into the pipeline to design the next
experiment.
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We illustrate a generic machine learning workflow for biological design in Fig-
ure 2. Such workflows are often referred to as Biological Design Automation (BDA)
or Design-Build-Test-Learn (DBTL) loops in the synthetic biology literature [4, 5],
although those terms also include workflows that do not incorporate machine learn-
ing. The machine learning workflow always begins with some raw data, as seen in
panel (a). This data could include molecular structures, genes, proteins, etc. which
could be stored in a variety of formats. Since machine learning methods work on
numerical inputs, we need to convert the raw data into a suitable numerical repre-
sentation. This conversion step is often called encoding or preprocessing. The result
is that each datum becomes a vector of real numbers, also known as features.

The next step, as shown in panel (b), is to use the predictive model and the
encoded observation in order to predict the quantity of interest associated with
the original input. Using the numerical vector, there are many different possible
prediction methods, including: tree based methods such as random forest [6], kernel
methods such as support vector machines and Gaussian processes [7], statistical
methods such as generalized linear models [8], and deep learning methods [9]. One
key requirement that is useful is that the prediction methods do not only predict the
target value, but also additionally provide some level of uncertainty estimation, such
as a confidence interval or even a full posterior predictive distribution. Panel (c)
shows an example of such an output, showing the prediction plus/minus some error
bar.

Using the predicted target value, an adaptive experimental design method pro-
poses new measurements to take. This proposal is the design, shown in panel(d).
Depending on the setting, a design could be a DNA sequence, a list of genes to knock
out, the nominal conditions of a chemostat, etc. The space of possible designs to
choose from will depend on the specifics of the problem at hand. The easiest case
is that there is a finite set of designs from which to choose, e.g. a small library of
known genes. In other cases, the set is finite but extremely large, e.g. the set of all
genes that consist of 80 base pairs. And in some cases the space will be infinite, such
as the set of all possible production rates of a protein.

The goal of the design is to produce some data that would be useful to measure.
This data would be of the same class as the raw data initially passed to the predictive
model. Having selected the design, the experiment can then be carried out, which
results in a measurement of the quantity of interest. As per panel (e), this is the same
quantity as the one predicted by the predictive model. The design and result of the
experiment is then added to the set of raw data, and the process can be repeated until
some stopping criterion is satisfied, e.g. we have exhausted our budget. Depending
on the exact method being used, the predictive model may be re-trained when we
acquire new data.



Machine Learning for Biological Design 7

2 Different Design Objectives

Machine learning algorithms are trained to optimise a particular objective function,
and adaptive experimental design is no exception. There are two major kinds of
objective functions for adaptive experimental design, corresponding to two different
goals of running an experiment.

• Improve output - to increase the value of the measured outcome, for example
to maximise the yield of a particular system.

• Improve predictor - to improve the accuracy of the predictor, or more generally
to improve our understanding of the prediction problem

These two different goals are described in more detail in Section 3 and 4 respectively.
Additionally, the biological design problem itself is often a multi-objective problem:
when designing a compound or a gene, or modifying a metabolic network, we often
wish to maximise some outcome while minimising others, or at least keeping them
within certain acceptable bounds. Alternatively, there may be multiple outcomes or
properties that we want to maximise. These objectives may occur in a number of
different domains, for example:

• Metabolic changes Increasing the production of one metabolite, without im-
pairing the production of other critical metabolites too greatly.

• Experimental feasibility The experimental design must be possible to imple-
ment. A DNA sequence must be stable enough to assemble and insert into an
organism or the experiment cannot be carried out.

• Toxicity A compound must not be too toxic for the biological system into which
it will be introduced. Modifications to the system should not produce excessive
toxic metabolites.

• Cost Different designs may incur different capital, labour and material costs. A
design that exceeds budgetary constraints cannot be be implemented, and the
benefits of each experiment may need to be weighed against its cost.

Any adaptive experimental design procedure in the context of synthetic biology
may need to satisfy some combination of these objectives, and possibly further
objectives. When assembling an experimental design workflow, the practitioner
should carefully consider all the relevant objectives, and ensure they are accounted
for.

Note that incorporation into the objective function is not the only way to handle
multiple conflicting objectives. Suppose we have a machine learning workflow for
designing gene promoters. Our main objective is to express a gene more strongly, but
we must also ensure that the sequence can be synthesised by our intended synthesis
method. After proposing a promoter but before manufacturing it, we could apply
a test to filter out sequences that are unlikely to survive the synthesis process. If a
proposed design fails this test, we will generate a new one rather than proceed to the
experiment stage. Alternatively, it would be even more efficient if we could avoid
proposing infeasible designs altogether. For example, if we know some sub-sequence
of the promoter must have certain values (e.g. it must the GCR1 transcriptional



8 Tom Blau and Iadine Chades and Cheng Soon Ong

activator), we can restrict the search space and refrain from proposing designs that
violate this constraint.

2.1 A Working Example

Given a particular gene, we may wish to choose a DNA sequence corresponding
to its promoter sequence. Since promoters regulate the rate of protein production
(in a complex fashion), choosing a particular DNA sequence of the promoter will
essentially regulate the gene.

We assume that a suitable numerical representation of the DNA sequence is
available, and a predictor such as the Gaussian process regression is trained to
predict the amount of protein being produced for a given promoter sequence. The
two different kinds of objective correspond to:

• Improve output Choose promoter sequences that increase the amount of pro-
tein produced. For example, the gene may produce a key component of some
important enzyme and the researcher may wish to increase the production of
this enzyme in the organism under study.

• Improve predictor Choose promoter sequences that improve our understanding
of how genes are regulated, for example by choosing to measure sequences that
reduce the prediction error (usually measured as root mean squared error for
regression) of the trained Gaussian process regressor.

The space of possible promoter sequences is extraordinarily big, so that we cannot
expect to search it exhaustively or even to cover a significant portion of it. We must
have some kind of way to quickly rule out large segments of the space (that are
unlikely to contain good promoters) without evaluating every sequence in those
segments. Moreover, the functional relationship between the DNA and the objective
is quite complex: the effects of individual base pairs are not independent of each
other, and even a change in a single nucleotide can lead to a significant difference
in outcome. Therefore, the predictor must capture the functional relationship, or at
least do so well enough to guide our search.

3 Action Improvement

Action improvement concerns optimising the output or decision made by an agent.
For example, if we have an agent that designs ribosome binding sites, this means
maximising the volume of protein that will be produced by the resulting system [10].
It is assumed that executing the chosen action is costly and time consuming, e.g. a
physical experiment that may take weeks to complete, and hence we are justified in
spending a considerable amount of effort optimising the action.
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One of the main challenges in action improvement is dealing with the uncertainty
of the predictor. If we had perfect predictions, we could simply search the space
of possible actions for the highest predicted value. This kind of action selection
is referred to as “exploitation” of the predictor, since we exploit what we know.
However, since there is uncertainty associated with each prediction, and that uncer-
tainty is different for different actions, we also need to take actions that will reduce
uncertainty, or we may never find the optimum. This kind of action selection is
called “exploration”. All action improvement algorithms have to somehow manage
the trade-off between exploration and exploitation. In this section we will present
the most popular approaches to maximising the action improvement objective.

3.1 Bayesian Optimization
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Fig. 3 A Gaussian Process trained on data from a trigonometric function. The true function is shown
as a dashed red line. Red crosses indicate data points that have been observed and incorporated into
the GP. The solid blue line is the mean function of the GP and the shaded blue region denotes one
standard deviation from the mean.

The first approach to action improvement which we will consider is Bayesian
optimisation (BO), and the workhorse of BO is the Gaussian process (GP). A GP can
be thought of as a function that will map each point in the action space to a Gaussian
distribution. Mathematically, this can be written as:

𝑝(𝑦 |𝑥) = N(𝜇(𝑥), 𝜎(𝑥)), (1)

where 𝑝(𝑦 |𝑥) is the predicted probability of seeing outcome 𝑦 when taking action 𝑥,
and 𝜇(𝑥) and 𝜎(𝑥) are functions that map action 𝑥 to the mean and standard deviation
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of the Gaussian distribution N . Figure 3 shows an example of a 1-dimensional GP
trained on data from the sinus function. Crosses mark the data points used for
training, and the underlying function is shown as a dashed red line. The solid blue
line denotes the mean function of the GP, i.e. the mean of the predicted Gaussian
distribution for each input x. The shaded region corresponds to one standard deviation
of the Gaussian distribution. Note that the predictor is very accurate near the training
data, and has high confidence (i.e. low standard deviation) about those predictions,
whereas the predictions become less accurate and less confidence as we move farther
away from the training data.

Keep in mind that not every function which outputs Gaussian distributions is
necessarily a GP. Indeed, GPs have many other interesting properties, which are
beyond the scope of this text. For a more thorough treatment, we recommend [11].

Because our prediction come in the form of a Gaussian distribution, we can
incorporate uncertainty (as quantified by its standard deviation 𝜎(𝑥)) into the action
improvement procedure. For example, we can choose the action that has the highest
probability of improvement, i.e. the 𝑥 that maximises 𝑝(𝑦 > 𝑦∗ |𝑥), where 𝑦∗ is the
highest outcome seen in the training data. Alternatively, we can choose the action
with the highest upper confidence bound for some confidence level. For example, the
shaded region in Figure 3 denotes one standard deviation from the mean, therefore
the top boundary of the shaded region is the upper confidence bound corresponding
to a confidence level of ˜84% (i.e. there’s an 84% chance that the outcome of an
action will be below this boundary).

Both the probability of improvement and the upper confidence bound are ex-
amples of acquisition functions. These are functions that map each possible action
𝑥 to some numerical value that determines how desirable it is. We always seek to
take the action that maximises our chosen acquisition function. There exist many
acquisition functions in the literature, but all of them have the important attribute
that they manage the exploration-exploitation trade-off. Consider the example of the
probability-of-improvement acquisition function. For values of 𝑥 where the uncer-
tainty of the prediction is large, the acquisition function will assign a high value
even if the predicted outcome 𝑦 is low. Thus the agent is encouraged to explore in
regions of the action space where it has little information, but also balances this
against actions with high-confidence, high-value actions.

Choosing the design that maximises the acquisition function implies yet another
optimisation problem. The optimisation of acquisitions functions can be solved in a
number of ways. If it is possible to compute the gradient of the acquisition function,
then we can use local optimisation algorithms such as gradient descent [12]. In this
case it is recommended to repeat the local optimisation multiple times from different
start locations. If the gradient is not available, then a global optimisation algorithm
such as the method of dividing rectangles [13] can be used.

Recall our working example of designing promoter sequences for a gene. How
would we use Bayesian optimisation to solve this problem? In order to apply GPs to
strings of DNA, we need to use a function such as the spectrum kernel [14, 15] which
computes similarity between two strings. If any prior data is available on promoters
and expression strength for the target gene, we can use them to train the GP. We
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then use gradient descent to find a promoter which maximises the upper confidence
bound acquisition function, and choose this as the design for our next experiment.
After running the experiment and getting a measurement of promoter strength, we
update the GP and repeat the process.

3.2 Bandits

The bandit approach most naturally applies to situations where we have a discrete
set of choices, and we want to find the choice that maximises the output. The multi-
armed bandit problem is a classic optimisation problem wherein an agent must
choose between a number of options for investing its finite resources, with the goal
of maximising a return on this investment. The options are analogised as choosing
between different slot machines, colloquially known as “one-armed bandits”, and
hence options are also referred to as “arms”. While the cost of each option is known
in advance, the potential return is only partially understood, and more knowledge
can be gained by allocating resources to this option [16]. In the context of adaptive
experiment design, this corresponds to choosing from a finite set of designs, for
example the set of all possible ribosome binding sites for an mRNA molecule.

The bandit framework proceeds iteratively: in each round, the agent chooses
one of the options and receives some reward. For example, the reward might be
the improvement in transcription initiation rate over the best known RBS. This
continues for a predetermined number of rounds, which reflects the available budget
for conducting experiments. The reward that would be received for each option is
not known in advance, and indeed is not deterministic. The same RBS will produce
different transcription initiation rates in repeated due to varying conditions that can’t
be fully controlled. Thus each option is associated with a true reward distribution,
and when the agent chooses that option the reward it receives is a random sample
from that distribution. The agent must maintain a predictive distribution over the
rewards for each option, which reflects the belief about possible rewards that the
option would yield. These distributions can be represented in any number of ways,
for example using simple distributions, mixture models or flow-based models. The
context around the experiment may also provide additional information that can
improve the representation of the distributions [17]. The important thing is that the
agent must be able to incorporate the observed rewards into its predictive reward
distribution, so that this information can be exploited in the next round.

The goal of the agent is to maximise the sum of received rewards, which in our
example is equivalent to maximising the transcription initiation rate of the best RBS
the agent found. This reward maximisation objective can be formulated in one of
two ways:

The first way is regret minimisation. Imagine an agent that had perfect knowledge
of the true reward distributions, and could thus pick the best arm (the one with
maximum expected reward) in every round. The difference between the expected
sum of rewards achieved by this ideal agent, and the expected sum of rewards
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achieved by a given non-ideal agent, is called the regret of the non-ideal agent. In
this formulation, an agent seeks to minimise the total regret that accumulates over a
fixed number of rounds.

Alternatively, the objective can be formulated as best-arm identification. Imag-
ine that after each round, we try to predict which option is best in the sense that it has
the highest expected reward. As we observe more rewards, over time the probability
that our prediction is correct increases. At the end of the last round we must make
a final prediction. In the best-arm identification setting, the goal of the agent is to
maximise the probability that the final prediction is correct [18]. Naturally, some
agent behaviours will be worse than others. For example, we intuitively expect that
repeatedly choosing the same option in every round would be sub-optimal, since we
gain no knowledge of the remaining options.

It is important to note that the two objectives, regret minimisation and best-arm
identification, are mutually exclusive, in the sense that an algorithm that optimises
one will be suboptimal for the other [19]. The intuition behind this is that the
best-arm identification objective can tolerate exploratory action that yield extremely
bad rewards. Such actions may allow to identify the best arm more quickly, but
also accumulate regret quickly. Conversely, regret minimisation requires being more
conservative in exploration, avoiding actions that may incur large regret, which slows
down identification of the best arm.

Consequently, the two formulations fit different adaptive experiment design set-
tings. In the event that we are choosing between designs that have inherently different
costs or benefits (e.g. choosing between different types of bioreactors that have dif-
ferent operating costs), regret minimisation is appropriate as it allows minimizing
the costs incurred by experimentation. On the other hand, if we are only considering
designs that have identical or similar costs (e.g. choosing between bacteria strains
that are equally expensive), then best-arm identification is appropriate.

There are many different subtypes of bandits in the literature, and many algo-
rithms have been proposed to solve them. One popular class of algorithms is known
as Thompson sampling. The core idea is to select options in proportion to their
probability of being optimal [20]. To achieve this, in each round the agent samples a
hypothetical reward for each option based on the predictive reward distributions that
it maintains for that option. The agent then chooses the option that corresponds to
the highest sampled reward. The probability that an option was selected is thus equal
to the probability that it has the highest expected reward (according to the predictive
reward distribution).

Consider the example of designing a gene promoter to maximise the expression
of a gene. This could be formulated as a bandit problem by using gene expression
strength as the rewards, and a library of candidate promoters as the set of options.
Historical data could be used to fit a simple distribution (e.g. a log-normal distribu-
tion) for use as a prior. We could then proceed to use Thompson sampling to select
a candidate promoter, and carry out the experiment to obtain a measurement of the
resulting expression strength. After using this result to update the prior, we would
then repeat the process until our budget is exhausted.
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3.3 Reinforcement Learning

Reinforcement learning is a general framework for problems that involve making a
sequence of decisions [21]. At the heart of reinforcement learning lies the Markov
decision process (MDP), depicted in Figure 4. The MDP serves as a mathematical
representation of the problem we wish to solve. It consists of two main components:
a policy and an environment.

Policy

Environment

actionreward observation

Fig. 4 The reinforcement learning framework. A policy observes the state of the environment
and takes an action accordingly. The action causes the state of the environment to evolve. The
environment than emits a new observation and a reward. The observation feeds back into the policy
to repeat the cycle, while rewards are used to update the policy.

The environment represents a system whose state changes over time. For example,
suppose we are trying to control a bioreactor to maximise the output of its product.
The bioreactor is the environment, and its state can be summarised by the population
sizes of the different microbial species in the reactor and the quantity of the desired
product they have yielded. A policy is an object that maps observations of the
environment to actions. In our example, the policy receives as input the population
sizes, and chooses the rate at which to introduce different nutrients to the reactor.

When the action chosen by a policy is executed in the environment, this causes the
state of the environment to evolve. The change in state is governed by the transition
dynamics of the MDP, also known as a transition function, since it maps the current
state and action to the subsequent state. In a bioreactor, these dynamics would be
determined by the rate of nutrient consumption, the bacterial yield rate, and growth
rate of each population. This entire step of changing from one state to the next by
executing an action is called a “transition”. That is, a transition is the collection of a
state, the pursuant action determined by the policy, and the subsequent state.

After completing a state transition, the environment emits an observation of the
new state, as well as a reward. This reward is a numerically value that expresses
how good or desirable the transition was. In other words, it is a function not only
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of the current state, but also of the action and possibly the previous state. Keeping
to the bioreactor example, the reward function could include a positive term that
corresponds to the bacterial yield, as well as a negative term that penalises the
excessive use of nutrients. This cycle then repeats until some limiting number of
transitions is reached, thus completing an episode.

The goal of a reinforcement learning algorithm is to learn a policy that maximises
the sum of rewards accumulated over the course of an episode. Therefore the design
of the reward function determines the behaviour of an optimal policy. Once a policy
is trained, it can be executed in the system to achieve the desired behaviour (e.g.
controlling a bioreactor) as defined by the reward. Great care must be taken in
designing the reward function, as it may produce incorrect behaviours that are not
immediately obvious. For example, the algorithm may discover a novel way to yield
large volumes of the desired product, but also contaminates the product with some
other undesirable metabolite that makes it unusable. If we had never encountered
such a contamination issue before, and didn’t incorporate it into the reward function,
then this behaviour is in fact “optimal” from the perspective of the algorithm.

It may be the case that it is difficult to measure our desired objective during an
episode, e.g. we can only measure the quantity of product after stopping and opening
the bioreactor. In such an event, it is possible to train a policy using sparse rewards:
assigning a reward of 0 to most transitions and awarding all the product yield to the
final transition. However, practitioners should be mindful that many reinforcement
learning algorithms perform poorly in the face of sparse rewards. In particular, if
the reward function includes penalty terms (in our example, a penalty for using
nutrients), sparse rewards may result in a policy that takes no action. This is because
any action is penalised and the reward at the final transition may not be enough to
counterbalance the penalty.

Another issue to be mindful of is that most implementations of reinforcement
learning algorithms include a discount factor. This is a constant real number between
0 and 1 which discounts the value of rewards more heavily the later they arrive in an
episode. In essence, the discount factor encodes our preference between achieving
rewards immediately and achieving rewards in the long term. The closer it is to 0,
the less we care about taking actions that will lead to high rewards in the future, and
the more we prefer actions that will yield a high reward immediately. The closer it
is to 1, the more we are willing to sacrifice short term gain in order to prioritise the
total reward at the end of an episode. Practitioners should be mindful to choose a
discount factor that suits their intended aim, and not simply use default value. Using
the bioreactor example, we may prefer a policy that yields more product sooner and
thus releases the reactor or other resources for another task, in which case a lower
discount factor is appropriate. On the other hand, our resources may already be
committed for a fixed time window and difficult to reallocate. In that case, we care
about the total product yield over a fixed time period, and a high discount factor is a
good choice.

It is important to note that reinforcement learning algorithms typically take a large
number of episodes before they learn a good policy that achieves high rewards. As
such, it is usually impractical to learn policies directly on physical systems. Rather,



Machine Learning for Biological Design 15

reinforcement learning is most effective when a computer simulation of the system
is available. Once an effective policy has been learned in silico, it can be fine-
tuned on a physical system. In other words, the policy is transported to the physical
system, and the algorithm continues to learn from interactions with this system,
thus compensating for the differences between the real world and the simulation. If a
good simulator is not available, it may be possible instead to use offline reinforcement
learning. This subclass of reinforcement learning uses historical data on actions and
observations (e.g. from a bioreactor with a hard-coded controller) in order to learn
an initial policy. This policy can then be deployed in a physical system, and may
continue to learn and improve over time.

As with all methods in this section, reinforcement learning algorithms have to
manage the trade-off between exploration and exploitation. This is usually done by
injecting some randomness into the policy. That is, instead of mapping observations
to a deterministic action, the policy maps observations to a distribution over actions.
The degree of randomness in this distribution can be decreased over time, either
according to a fixed schedule, or in proportion to the performance of the policy (as
measure by rewards). In any case, practitioners should take care to ensure that the
randomness approaches zero by the end of policy learning, and to avoid deploying
trained policies that still have a large amount of randomness.

3.4 Recommendations and Further Reading

This section introduced a number of approaches to the task of action improvement,
and each approach can be implemented in many different ways. When faced with
a specific adaptive experiment design problem, it can be difficult to choose an
appropriate algorithm. Here we set up a few rules of thumb that can help guide you
in making that choice.

Bayesian optimisation is highly effective at optimising actions, but its effective-
ness declines rapidly as the dimensionality of the problem grows. In other words, if
the number of design or observation parameters becomes large BO ceases to perform
well. What constitutes as large varies depending on the exact field, but a general rule
of thumb is that 10 − 20 parameters is the maximum that BO will handle reliably.
Beyond that point, it is recommended to use other methods.

Reinforcement learning, and its attendant Markov decision process framework,
are built around the assumption that the system under consideration is stateful, i.e.
it has some state that changes as a result of the decisions we make. While we can
always apply RL to stateless systems, it will generally be inefficient to do so, and
bandits are a better tool for such cases. Additionally, RL algorithms usually require
a large number of system interactions to learn good policies, and as such are mainly
useful when we have an efficient simulation of the system in question.

Another point to consider is whether the space of design is continuous (e.g.
choosing the population ratios of a multi-species bacterial culture) or discrete (e.g.
choosing between a handful of species of bacteria). Bayesian optimisation generally
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works well with continuous spaces, and specialised algorithms are needed to handle
discrete ones. On the other hand, bandits are mainly designed for discrete spaces,
and perform poorly in the continuous case. Reinforcement learning can handle both
discrete and continuous designs, although care should be taken about the specific
algorithm being used.

The methods introduced thus far have many additional details that are beyond
the scope of this chapter. For those wishing to understand them in greater depth, we
recommend the following resources: To learn more about Bayesian Optimisation, we
recommend the book Bayesian Optimization [22]. The canonical text on Gaussian
processes is Gaussian Processes for Machine Learning [11]. For a broader overview
of the main types of predictive models used in machine learning, see Pattern Recog-
nition and Machine Learning [23] and Mathematics for Machine Learning [24].
Introduction to Multi-armed Bandits [25] is a good primer for bandit problems and
algorithms. For more on reinforcement learning, a good resource is Reinforcement
Learning: an Introduction [21].

4 Predictor Improvement

In the model improvement setting our objective is to acquire new data that can be used
to improve some performance metric of the model itself (e.g. predictive accuracy,
confidence bounds) rather than a metric of the model’s output (e.g. binding affinity of
a ligand). This is distinct from the learning that occurs in a typical machine learning
algorithm, where the data is predetermined and available at negligible cost. Here the
acquisition of each new data point or batch of points comes at a significant cost, and
the aim is to maximise the improvement in model performance subject to a limited
budget of data. In other words, the independent variable being optimised is the data
itself.

More precisely, the data to be acquired consists of an independent component,
called a query or design, which we completely control, and a dependent component
which depends on the design in a potentially complicated way. For example, suppose
we are trying to improve a model of a drug’s pharmacokinetics. The design could
consist of the dose to be administered, or the times at which to take blood samples.
The serum concentrations we will measure depend on the design but also on the
biology of the body, and this dependence is what we’re trying to model. Thus the
question is how to optimise the design so that, after conducting the experiment and
collecting data, we will see the maximum improvement in model predictions of
serum concentration.
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4.1 Bayes Optimal Experiment Design

Bayesian statistics is founded on Bayes’ theorem, which describes how the degree
of belief about some numerical value is updated when we see new data. Suppose
are working with a genetic toggle switch and a chemical inducer [26]. We need to
develop a predictive model that will predict the inducer concentration inside the cell
at a given time 𝑡, based on the concentration of the inducer outside the cell and the
permeability of the cell wall. Thus the permeability and intracellular concentration
are variables, which we will denote 𝐴 and 𝐵. In a Bayesian framework, we have
some prior beliefs about the values of 𝐴 and 𝐵, which are probability distributions
denoted as 𝑝(𝐴) and 𝑝(𝐵), respectively. For any given value of the permeability
(𝐴), our predictor gives us a belief (i.e. a probability distribution) about the value
of the intracellular concentration(𝐵). We denote this as 𝑝(𝐵 |𝐴), which is read as
“probability of 𝐵 given 𝐴”. Bayes’ theorem allows us to compute the posterior belief
about permeability after observing the concentration:

𝑝(𝐴|𝐵) = 𝑝(𝐵 |𝐴)𝑝(𝐴)
𝑝(𝐵) . (2)

In other words, we can use Bayes’ theorem to learn the permeability parameter
of our predictor from data. Figure 5 visualises what a prior and posterior might
look like. In this case, the prior 𝑃(𝐴) (in blue) is uniform over the range of 0 − 10
units, meaning that before observing any data, we believe the permeability of the cell
membrane is equally likely to be any value in that range. The posterior 𝑃(𝐴|𝐵; 𝑡 = 1)
(in orange) is calculated following one observation of the intracellular concentration,
made one minute after starting the system. It has a humped shape with a peak at ˜6.7
hours. Once we have observed the intracellular concentration at time 𝑡, we are much
more confident that the permeability is in the range of 4 − 9 units and much less
confident that it is outside that range. Another posterior, 𝑃(𝐴|𝐵; 𝑡 = 2) (in green) is
calculated using a single observation, but this time made at the two minute mark. It
has a much narrower shape than the posterior at 𝑡 = 1 and the peak sits at 6 units.

Two important insights follows from this example: first, the posterior can be more
or less peaked depending on the time of observation. Second, we would like to have
a posterior that is as narrow and peaked as possible, concentrating the majority of
the probability in a small range. The degree to which a distribution is peaked is also
known as its self-information or entropy, so that highly peaked distributions are said
to have low entropy. The increase in peaked-ness of the distribution from the prior
to the posterior is known as information gain.

Therefore, we want our experiments to have high information gain, i.e. to peak
the posterior as much as possible. Bayes optimal experiment design (BOED) is the
discipline that focuses on maximising the information gain of experiments by ma-
nipulating the independent variables [27]. In the above example, the independent
variable is the time of measurement (we can also imagine manipulating the initial
extracellular concentration). The choice of values of the independent variables is the
design of the experiment [28]. It is important to note that different outcomes are pos-
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Fig. 5 Prior (blue) and two different posterior (orange and green) probability distributions for
permeability of a cell membrane. Each posterior corresponds to a different experiment. The green
posterior is much more peaked and concentrated than the orange one, indicating that more infor-
mation was gained about permeability from the corresponding experiment.

sible when repeating the same experiment, e.g. different intracellular concentrations
at the same measurement time. This will lead to different posteriors and different
information gains. Therefore, it is impossible to know what the exact information
gain will be for any given design before running the experiment. We only know the
distribution of possible information gains, conditional on the design, and can only
maximise the expected value of information gain.

Calculating this expected information gain, and optimising it with respect to
the design variables, is greatly dependent on the methods being used to model the
problem. If the distributions 𝑝(𝐴), 𝑃(𝐵) and 𝑝(𝐵 |𝐴) are represented by simple
probability distributions (e.g. Gaussian and uniform distributions), linear models,
or Gausian processes, there is often an analytical solution, i.e. a relatively simple
mathematical expression that exactly computes the expected information gain for any
given design. However, it is very common that an analytical solution isn’t available,
and the expected information gain must be approximated. This approximation typi-
cally involves sampling inputs from a probability distribution and performing some
mathematical operations on those inputs. As the number of sampled inputs increases,
the estimation becomes more exact, but the computational cost also increases.
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Whether the expected information gain can be computed exactly or only approx-
imately for a given design, we are then left with the task of finding the design that
maximises gain. In the event that the set of possible designs is small, this can be
done by evaluating the gain for all possible designs and choosing the best one. In the
more common case, however, the space of designs is too large (or possibly infinite)
and more sophisticated methods must be used. If our model allows us to compute
the gradient of expected information gain with respect to the design variables, we
can use a gradient descent algorithm to optimise the design [12]. Otherwise, we can
use gradient-free methods, such as coordinate descent, or simulated annealing. Note
that many of the methods introduced in Section 3 can also be used to maximise
information gain, for example reinforcement learning [29].

4.2 Model Discrimination

In addition to inferring the parameters of a predictor, we can also use BOED in the
case where we have multiple competing predictor architectures, and have to deter-
mine which one best fits our data. For the example of predicting the permeability of
a cell membrane, we could have different models reflecting different assumptions:
passive diffusion, active transport, asymmetric influx and efflux, degradation of the
inducer, etc. The Bayesian framework can then be applied to choose between these
predictive models, in a process called model discrimination or model selection. Each
predictor is assigned a prior probability that it is the correct one, thus inducing a prob-
ability distribution over predictors [30, 31]. The left panel of Figure 6 show a uniform
prior over four predictors 𝑃1 − 𝑃4, meaning that before making any observation, we
have no preference between the predictors. After observing a measurement of the
intracellular concentration of the inducer, Bayes’ theorem is applied to compute the
posterior distribution, shown in the right panel.

The posterior indicates a preference for predictor 𝑃4, but this preference is rela-
tively mild: only a 4-to-3 ratio. A different design would lead to a stronger preference.
Fortunately, information gain is related to the strength of preference for a predic-
tor in this setting, just as it was related to the peaked-ness of the posterior in the
single model setting. Thus, we can use BOED to choose an experiment design that
maximises the expected information gain of the posterior over predictors.

Finally, it is possible to consider the joint distribution that combines both the
distribution over predictors and the individual distribution of each of the predictors.
By selecting a design that maximises information gain with respect to this joint
distribution, we can simultaneously maximise the posterior preference for a predictor
as well as the posterior confidence about the parameters of that predictor.
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Fig. 6 Prior (left) and posterior (right) probability distributions over four different predictors. The
prior accords equal probability to every predictor, since we have no reason to prefer any particular
one. After observing an experiment, the posterior accords more probability to 𝑃4, meaning the
observed outcome is most consistent with this predictor.

4.3 Active Learning

Whereas BOED seeks to improve the model by obtaining an accurate estimate of
the model parameters, active learning (AL) is focused on improving the predictive
performance of the model directly [32, 33]. Recall our previous example of a model
that predicts serum concentration of a drug based on elimination half life. Rather
than trying to identify the half-life with a high degree of certainty and using this
estimation to predict serum concentration, we could learn some model that predicts
serum concentration directly. Our goal would then be to minimise some notion of
the predictive error, for example the average squared value of the error between
predicted concentration and measured concentration.

Active learning is an extension of the supervised learning setting, where we have
a set of data used to train the model as well as a set that will be reserved to test
the model. In other words, the predictive error will be evaluated using the test data.
Additionally, in AL we assume a much larger set of unlabeled data, i.e. inputs for
which we don’t know the true target value. The task is to choose some subset of these
inputs for which we will acquire target values, i.e. to design experiments, such that
after re-training the model with the experimental results, the average predictive error
on the test data will be minimised. As before, we don’t know what the true target
value (e.g. the measured serum concentration) will be before we measure it, so we
can only minimise the expected value of the predictive error, where the expectation
is with respect to the current belief (as represented by our model) about what the
target value will turn out to be. Mathematically, let 𝑓 () be the current model, 𝑔() be
the model after re-training, and ℓ be the predictive error. Then we wish to minimise:
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E𝑝 (𝑦 | 𝑓 (𝑥 ) ) [ℓ(𝑔(𝑥∗), 𝑦∗)] , (3)

where 𝑥 are the design variables we control, 𝑦 is the true measurement associated
with 𝑥, and (𝑥∗, 𝑦∗) are the test data. 𝑝(𝑦 | 𝑓 (𝑥)) is the belief about 𝑦 according to
the current model 𝑓 (), therefore the notation E𝑝 (𝑦 | 𝑓 (𝑥 ) ) means we are taking the
expected value with respect to the uncertainty over the measurement 𝑦. The model
must provide this uncertainty in addition to the prediction 𝑓 (𝑥).

In general, it is impossible to know what the model 𝑔() will look like before
carrying out the experiment, and therefore the above objective cannot be computed
exactly. Thus we will, in most cases, need to optimise some proxy objective. A
popular family of methods is to choose the design 𝑥 that maximises the predictive
uncertainty of 𝑓 (𝑥) [34]. An alternative approach is to estimate a Bayesian posterior
regarding the distribution of the model parameters after re-training, and choose
the design that minimises uncertainty about the parameters (rather than about the
prediction) [35].

Returning to the example of designing gene promoters, we could use active learn-
ing to improve prediction. Our predictive model could be a Bayesian neural network,
a deep learning architecture that supports efficient computation of distributions over
the model parameters and predictions [36]. If we have a large pool of candidate
promoters (e.g. 100, 000 promoters), we can compute the predictive uncertainty for
all of them, and choose a small subset (e.g. 100) of the promoters that have the high-
est uncertainty. After experimentally evaluating the expression strengths of these
promoters, we add the results to our data and re-train the Bayesian neural network.

4.4 Recommendations and Further Reading

In the prediction improvement setting, there are two primary types of approach:
Bayesian optimal experiment design and active learning. Although there is some
overlap and strong mathematical connections between the two, they are generally
suited to distinct use cases. BOED is primarily an approach for system identification.
When studying a system, such as a genetic toggle switch, and there are parameters
whose values we want to identify, e.g. the flux of a chemical inducer, then the BOED
framework and algorithms are appropriate. In contrast, active learning is better suited
for the setting where we don’t care about the value of any specific parameter, but
rather are concerned with the performance of our predictor, and wish to improve it.

The above is a general guideline to help decide which class of tools you should
consider when faced with a specific research question. Because the field evolves
rapidly, any specific algorithm recommendation may soon become obsolete. How-
ever, we can recommend some texts that are good entry points to the literature.

For the mathematical foundations of Bayes optimal experiment design, see On
a Measure of the Information Provided by an Experiment [27]. An overview of
deep learning methods for solving the BOED problem can be found in Modern
Bayesian Experimental Design [37]. For an in-depth introduction to active learning,
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confer Active Learning [32]. Finally, A survey of deep active learning [38] provides
a rundown of contemporary active learning algorithms.

5 Discussion and Conclusion

Machine learning based approaches for adaptive experimental design have the po-
tential to accelerate scientific discovery. There are two different kinds of goals of
designing an experiment: to improve the output of the experimental system, or to
improve the predictive model. Improving the output of the experimental system is
useful when the scientist is interested in maximising the yield (for example the
amount of protein) of the system under study. In contrast, the scientist may be inter-
ested in collecting data that improves the predictive model itself, that is to find data
that provides information with the goal of improving the accuracy of the predictive
model. For both scenarios, an estimate of the predictive uncertainty is highly useful
to take into account the fact that predictive models are not perfect.

When improving actions, a key challenge is to manage the trade-off between
exploration and exploitation. We considered three increasingly general classes of
action improvement approaches. Bayesian optimisation uses a Gaussian process as a
predictive model, and optimises the corresponding acquisition function. Acquisition
functions provide a numerical value representing how desirable a particular action
is; which could be the probability that the action improves the output, or an upper
confidence bound that directly trades off exploration and exploitation. When we have
a discrete set of choices, a bandit approach can be used to maximise the output of the
experiment. There are two major formulations of bandit objective functions: whether
to minimise the regret, or to identify the best choice (called arm). The most general
approach for improving actions is reinforcement learning, which also additionally
models the fact that the experimental environment may change over time.

When improving the predictor, the main goal is to acquire new data that improves
the performance of the predictor itself. The classical approach based on Bayes’
theorem is to find a posterior distribution that is more peaked, which indicates that
the data used to update Bayes’ theorem is very informative. However, since we have
not yet measured the data when designing the experiment, and hence the amount of
information gained by the experiment is yet unknown, optimal experimental design
approaches need to optimise the expected value of information gain. The Bayesian
framework can also be used for model selection. We could directly focus on the
performance of the predictive model itself, instead of the distribution over the models.
The active learning approach considers which of the set of currently unlabelled data
that should be labelled, to potentially maximise the prediction performance.
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5.1 Greedy, non-Greedy and Batch Algorithms

Thus far we have discussed only the case where a single experiment is optimised at a
time, before it is carried out and its results are used to update the model. Algorithms
that work in this way are known as greedy algorithms, because they greedily optimise
for immediate gain without considering the effects that the design will have farther
into the future. However, it is a common occurrence that we have the budget to carry
out more than one experiment and know this in advance. In this case, we could apply
a non-greedy algorithm that will consider the effect of each experiment on all future
experiments within our budget. While such algorithms still design experiments one
at a time, they sacrifice immediate gains (i.e. accepting less information gain or less
reduction in predictive error from the current experiment) in exchange for higher
gains later on, leading to an overall better series of experiments.

The drawback of non-greedy optimisation is that it is more difficult to carry out.
In both the BOED and AL settings we saw that the objective, whether information
gain or predictive error, can only be optimised in expectation, because we don’t know
what the outcome of the experiment will be at the time we design it. When seeking
to optimise the long-term benefits of an experiment, we have to take an expectation
over the possible outcomes of all future experiments. Additionally, since we are still
optimising experiments one at a time, the designs of future experiments are also not
known in advance, and we have to take an expectation over the possible values of
future designs, as well.

Yet another setting to consider is that of batch algorithms, so called because they
optimise a batch of experiments simultaneously. While this approach is not adaptive,
since all experiments must be designed before observing any outcomes, it still has
some benefits. First, there are many cases where we can conduct experiments in
parallel, leading to considerable savings in time and cost compared with running
them sequentially. Examples range from high-throughput biology, where thousands
of experiments can be carried out simultaneously, to experiments in animal models
which may take years to complete. Second, while batch algorithms can’t incorporate
information about the outcomes of the experiments, they can still take into consid-
eration how the designs affect one another, which greedy algorithms cannot do. For
example, when designing a batch of experiments we can consider how well the batch
covers different regions of the space of possible experiments [39].

In summary: greedy algorithms optimise each design by taking an expectation over
possible outcomes of the current experiment, batch algorithms optimise all designs
simultaneously by taking an expectation over possible outcomes of all experiments,
and non-greedy algorithms optimise designs sequentially by taking an expectation
over possible outcomes and designs of all future experiments.
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5.2 Summary

The approaches presented in this chapter provide additional tools for a scientist
to use machine learning predictors to design better experiments. The choice of
how to define “better” results in two different kinds of objectives: improving the
predictive model or improving the outcome of the experiment. Depending on the
experimental search space and the objective to be optimised, different approaches
are more suitable than others. We have therefore surveyed five different classes of
approaches that adapt to new data as it is acquired and have shown promise for
biological design. Broad guidelines are presented to help practitioners in choosing
the right tool for their particular problem. However, there are many nuances to every
scientific question, and equally as many nuances to each machine learning approach.
As such, we include a number of recommended texts that can help acquire a deeper
understanding of relevant machine learning algorithms. These texts will empower
the reader to get more out of the tools presented here. We hope that our exposition
provides a useful entry point for experimental scientists interested in accelerating
the search for better experimental designs.

References

[1] Ioana M Gherman et al. “Bridging the gap between mechanistic biological
models and machine learning surrogates”. In: PLoS Computational Biology
19.4 (2023), e1010988.
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