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PREDICT ARCADE REVENUE FROM CS PHD

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US
Correlation: 98.51% (r=0.985065)
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PREDICT ARCADE REVENUE FROM CS PHD

Year CS PhD in USA Arcade (Sbillions)

1000 1200 1400 1600
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Looks like machine learning, but before we can learn that we need to do some maths



MATHEMATICS? THIS IS BORING...
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Techniques for Sleeping in Class — The ... Grades Suffer When Class Time Doesn'

Pathways: Mathematics | Yeshiva University
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The Cure for Students Sleeping in Class Sleeping Through the Semester: A St... Want to take a nap after class ...



SHAMELESS PLUG: MATH FOR ML
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(in thousands)
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WHAT DO WE MEAN WHEN WE DRAW DOTS?

e Three views of a vector
e (CS) array of numbers
* (physics) magnitude and direction

e (math) satisfies + and x

Age  Annual Salary
(in thousands)
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LINEAR ALGEBRA — WHAT IS A VECTOR?

* Algebra: Set of objects and set of rules to manipulate them

* Objects: vectors xand y

* Rules: + and x, as well as defining a zero.
e Linear: ax + by

e distributivity

* associativity
* Vector space:

* Closure: adding and scaling vectors keeps things in the vector space



MACHINE LEARNING IS ABOUT PREDICTION

e The values of y for the training data is not the
main focus

 We are interested in generalization error:
What is the error we make on unseen data?

* Do not train on the test set

Age  Annual Salary
(in thousands)
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FITTING A LINE

e The values of y for the training data is not the
main focus

 We are interested in generalization error:
 What is the error we make on unseen data?

* Do not train on the test set

Age  Annual Salary
(in thousands)
89.563

123.543

23.989
138.769
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FITTING A LINE - NOTATION

N=5

X =tpxg; e ol
y=1[yy, ., W'

X, is a real number
Y, is a real number
f(x) = wy x + wg

X=[x1]

Find the best line that fits the data
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LINEAR ALGEBRA - MATRIX

 Want to solve Xw =y

* Solutions of linear equations

* |Inverse and transpose

Definition 2.3 (Inverse). Consider a square matrixA € R"*". Let matrix
B € R"™" have the property that AB = I, = BA. B is called the
inverse of A and denoted by A~".

Definition 2.4 (Transpose). For A € R™*" the matrix B € R"*" with
b;; = a;; is called the transpose of A. We write B = A"




LINEAR ALGEBRA

* Linear independence

Definition 2.11 (Linear Combination). Consider a vector space V' and a
x;, € V. Then, every v € V of the form

finite number of vectors x;

k
v=M@ + e = ) Aiw €V (2.65)

1=1

e Basis and rank

Definition 2.14 (Basis). Consider a vector space V = (V, +,-) and A C
V. A generating set A of V' is called minimal if there exists no smaller set

A C A CV that spans V. Every linearly independent generating set of V/
is minimal and is called a basis of V.

» Matrix: represent data vs represent transformations

* Linear vs Affine space: what is a linear regressor?



FITTING A LINE — LINEAR ALGEBRA

* Want to solve Xw =y

* |f points don’t fall perfectly on the line, no
solution

* Find a point z that lies in the column space of X
and is closesttoy

Closest?
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ANALYTIC GEOMETRY

* Inner products
* Distances
* Orthogonality

* Orthogonal projection




ANALYTIC GEOMETRY

* Inner products
Definition 3.2. Let V' be a vector space and €2 : V x V' — R be a bilinear
mapping that takes two vectors and maps them onto a real number. Then

= () is called symmetric if Q(x,y) = Q(y,x) for all z,y € V, i.e., the
order of the arguments does not matter.

» () is called positive definite if
Ve e V\{0}: Q(z,xz) >0, €(0,0)=0. (3.8)

A positive definite, symmetric bilinear mapping {2 : V' xV — R is called
an inner product on V. We typically write (x, y) instead of Q(x, y).

* Distances

|zl =/ (z, )

Definition 3.6 (Distance and Metric). Consider an inner product space
(V,(-,-)). Then

d(z,y) := [z -yl =/ (x—y,z—y) (3.21)



ANALYTIC GEOMETRY

* Orthogonality

Definition 3.7 (Orthogonality). Two vectors @ and y are orthogonal if and

only if (x,y) = 0, and we write & | y. If additionally ||| = 1 = |ly||,
i.e., the vectors are unit vectors, then & and y are orthonormal.

e Orthogonal projection (recall linear mapping = transformation matrix)

Definition 3.10 (Projection). Let V be a vector space and U C V a
subspace of V. A linear mapping 7 : V' — U is called a projection if
7T2 = TOoTm =T.

The projection 7y, (x) is closest to x, where “closest” implies that the
distance || — 7y (a)|| is minimal. It follows that the segment 7y (x) — @
from 7y () to x is orthogonal to U, and therefore the basis vector b of
U. The orthogonality condition yields (7 (x) — «,b) = 0 since angles
between vectors are defined via the inner product.

The projection 7;; () of & onto U must be an element of U and, there-
fore, a multiple of the basis vector b that spans U. Hence, 7y, () = Ab,
for some \ € R.




ANALYTIC GEOMETRY

 Want to solve Xw =y

* Find a point z that lies in the column
space of X and is closest to y

e zisfound by the orthogonal
projection of y onto the column
space of X




REMINDER OF MATRIX OPERATIONS

 Want to solve Xw =y

* Solutions of linear equations

* |Inverse and transpose

Definition 2.3 (Inverse). Consider a square matrixA € R"*". Let matrix
B € R"™" have the property that AB = I, = BA. B is called the
inverse of A and denoted by A~".

Definition 2.4 (Transpose). For A € R™*" the matrix B € R"*" with
b;; = a;; is called the transpose of A. We write B = A"




ANALYTIC GEOMETRY

e zisfound by the orthogonal
projection of y onto the column
space of X

* Column space of X is spanned by
{x,1}, and hence we need to find
coordinates w; and w, of the
projection, such that the linear
combination Xw is closest to y.

* Closest means that the vector
connecting z to y is orthogonal to the
column space of X.

X(y—2)=0-2> XT(y-Xw) =0
* Solving gives w = (X™X)1 XTy



ANALYTIC GEOMETRY

Want to solve Xw =y

Find a point z that lies in the column
space of X and is closest to y

z is found by the orthogonal
projection of y onto the column
space of X

N=5

x=tpare o it

Y= [V s NI

X, is a real number
Yn is a real number
f(x) = wy x + w

X=[x1]

w* = (XTX)1 XTy




MATRIX DECOMPOSITIONS

How do we compute the inverse of a matrix?

12

Al =

= A11022 — Q12021
22

1 99 —a12
—az; a4y

11022 — A12021

But for matrices that are larger, we do not have a closed form rule.
Recall that linear mappings have an associated transformation matrix

Disentangle different parts by an eigenvalue decomposition (inverse of a diagonal matrix is easy)

Theorem 4.20 (Eigendecomposition). A square matrix A € R"*" can be
factored into

A=PDP ', (4.55)

where P € R"*" and D is a diagonal matrix whose diagonal entries are
the eigenvalues of A, if and only if the eigenvectors of A form a basis of R".

According to the
Abel-Ruffini
theorem, there is in
general no algebraic

solution for
polynomials of
degree 5 or more
(Abel, 1826).




OTHER MATRIX DECOMPOSITIONS

* For positive definite matrices

we have the Cholesky decomposition

Theorem 4.18 (Cholesky Decomposition). A symmetric, positive definite
matrix A can be factorized into a product A = LL', where L is a lower-
triangular matrix with positive diagonal elements:

* For non-square matrices we have the singular value decomposition

Theorem 4.22 (SVD Theorem). Let A™ ™" be a rectangular matrix of rank
r € [0, min(m,n)]. The SVD of A is a decomposition of the form

(4.64)




SUMMARY: MATH FOR ML
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FITTING A LINE — OPTIMIZATION

* Want to solve Xw =y

* |f points don’t fall perfectly on the line, no
solution

* Instead, find the closest approximate solution

miny || Xw -y |2

e Solve for a minimum by taking the gradient and
setting to zero.

Age  Annual Salary
(in thousands)

89.563

123.543

23.989
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VECTOR CALCULUS - GRADIENT

{(1) -zt + Tz + 5% — 17x + 3.

Univariate calculus _
dl(x)

—42° + 212 + 102 — 17
dx

Definition 5.5 (Partial Derivative). For a function f : R" — R, =
f(x), € R™ of n variables x, .. ., x, we define the partial derivatives as

Q_f — lim flxy 4+ h,zo,...,2,) — f(x)
Oxr,  h—0 h

‘()f — lim flzy,...,xp_1, 2, + h) — f(x)
oxr,  h—0 h

and collect them in the row vector

df _[of(x) Of(=) of (z)

Vef =gradf = — e e R'*™,

da oxy 0xs ox,,

(5.40)

row vector



FITTING A LINE — OPTIMIZATION

* Find the closest approximate solution

miny || Xw—y |2

* Solve for a minimum by taking the gradient and
setting to zero.

e Gradient (wrtw)is 2 (Xw—y)™X

* Solving for stationary point gives

XTXw = XTy

Age  Annual Salary
(in thousands)
89.563
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VECTOR CALCULUS - JACOBIAN

Vector valued functions

Definition 5.6 (Jacobian). The collection of all first-order partial deriva-
tives of a vector-valued function f : R" — R™ is called the Jacobian. The
Jacobian J is an m x n matrix, which we define and arrange as follows:

_ _df(z) _ [0f(=) of (x)
J=Vaf = de | 9z, 0=, (5-57)

The gradient of a
function
fF:R" —> R™isa

matrix of size
m X n.




SUM RULE, PRODUCT RULE, CHAIN RULE

Product rule:

(f9)' = f'9+ fd',

Sum rule:

(f+9) =f+4,
Chain rule:




SUM RULE, PRODUCT RULE, CHAIN RULE

Product rule:

Sum rule:

Product rule:

(fg9) = f'g+ fd',

Sum rule:

(f+9) =f+4d,
Chain rule:

(9(f) =g (H)f




SUM RULE, PRODUCT RULE, CHAIN RULE

Product rule: ‘_ 7. | f g (5.46)

0 _
Sum rule: o | (5.47)

If f(x,,2,) is a function of x, and x,, where z,(s,t) and (s, 1)
themselves functions of two variables s and ¢, the chain rule yields

0f da, | 0f dus . Oz, Oz,

df()11+£01)

Oz, O Ory OF

df _9f o=z [_L _L} Js Ot
d(s,t) 0z d(s, )

ox,

Product rule:

(fg9) = f'g+ fd',

Sum rule:

(f+9) =f+4d,
Chain rule:

(9(f) =g (H)f



CHAIN RULE

If f(z,,2,) is a function of x; and x5, where x,(s,t) and z,(s,1)
themselves functions of two variables s and ¢, the chain rule yields

dr, Ox,

df  of o :[QL gf_] ds ot

ox 1 0

d(s,t) Oz O(s,t)

. % ) <
- Oz




FITTING A LINE — OPTIMIZATION

* Want to solve Xw =y

* |f points don’t fall perfectly on the line, no
solution

* |Instead, find the closest approximate solution

miny, || Xw-y []?

* For some functions, we may not have a closed
form solution for the minimum. Find minimum
numerically.

Age  Annual Salary
(in thousands)

89.563

123.543

23.989
138.769
113.888




CONTINUOUS OPTIMIZATION

* Objective function

min f(x)

* Gradient Descent

Ty =Ty — 'y((Vf)(a:()))T

* Gradient Vf
* Step-sizey



FITTING A LINE = MAXIMUM LIKELIHOOD

 Want to solve Xw =y

* |f points don’t fall perfectly on the line, no
solution

* Assume data (X, y) is represented by random
variables

* And for a given family of probability densities,
compute the maximum likelihood

max,, p(y | X, w)

e What is the noise model?
e What is the prior?

*  What is the predictive uncertainty?

Age  Annual Salary
(in thousands)
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PROBABILITY AND DISTRIBUTIONS

* Probability space

 Sample space (£2), e.g {hh, ht, th, tt}

* Event space, e.g. one head = {ht, th}

* Probability space, e.g. P(one head) = 0.5
* Random variable

e Target space, e.g. discrete or real

e Random variable is a function X

Type “Point probability” “Interval probability”
Discrete P(X = z) Not applicable

Probability mass function

Continuous p(x) P(X <)
Probability density function Cumulative distribution function




PROBABILITY AND DISTRIBUTIONS

Definition 6.1 (Probability Density Function). A function f : R” — R is
called a probability density function (pdf) if

1. Ve e RP : f(x) >0

2. Its integral exists and

* Distribution (or law) of the random variable




RULES OF PROBABILITY

e Sumrule

* Product rule

Definition 6.3 (Expected Value). The expected value of a function g : R —
R of a univariate continuous random variable X ~ p(z) is given by

* Bayes’ Theorem Ex[g(z)] :/J(;Iz)p(;'zr)cl;'zr. (6.28)

X

likelihood prior
P .

_ pylz)p(z) o : p— : —
plx|ly) =——"""" Definition 6.6 (Covariance (Multivariate)). If we consider two multivari-

ate random variables X and Y with states © € R” and y € R” respec-
evidence tively, the covariance between X and Y is defined as

Covlz,y| = Elzy '] — E[z]|Ely]" = Cov[y,z]" € RP*F. (6.37)

posterior haVad



GAUSSIAN DISTRIBUTION

1 T — 11)?
exp ((1/‘))

—-1.5 =10 =05 0.0
I



FITTING A LINE = MAXIMUM LIKELIHOOD

* Want to solve Xw =y

* |f points don’t fall perfectly on the line, no
solution

* Assume data (X, y) is represented by random
variables

* And for a given family of probability densities,
compute the maximum likelihood

max,, p(y | X, w)

e \What is the noise model?
We assume Gaussian noise

Age  Annual Salary
(in thousands)

89.563

123.543

23.989
138.769
113.888




CONJUGACY AND EXPONENTIAL FAMILY

plz|y) = ——
N—— p(y)

likelihood prior

—— Bayes’ Theorem

p(y|z)p(x)

posterior S~~~

Definition 6.13 (Conjugate Prior). A prior is conjugate for the likelihood

evidence function if the posterior is of the same form/type as the prior.

An exponential family is a family of probability distributions, parame-
terized by @ € R”, of the form

p(x|0) = h(x)exp ((0,¢(x)) — A(0)) , (6.107)

Natural parameters 0
Sufficient statistics ¢ (x)
Log partition function A(0)

Theorem 6.14 (Fisher-Neyman). [Theorem 6.5 in Lehmann and Casella
(1998)] Let X have probability density function p(x | ). Then the statistics
o(x) are sufficient for 6 if and only if p(x | @) can be written in the form

p(x|0) = h(x)ge(d(x)), (6.106)

where h(x) is a distribution independent of 6 and gy captures all the depen-
dence on 0 via sufficient statistics ¢(x).




MACHINE LEARNING IS ABOUT PREDICTION

* Predict salary (y) from age (x)

e The values of y for the training data is not the
main focus

 We are interested in generalization error:

What is the error we make on unseen data?

* Do not train on the test set

Age  Annual Salary
(in thousands)

89.563

123.543

23.989
138.769
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