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Abstract Multiple Kernel Learning (MKL) is a popular generalization of kernel
methods which allows the practitioner to optimize over convex combinations of
kernels. We observe that many recent MKL solutions can be cast in the framework
of oracle based optimization, and show that they vary in terms of query point
generation. The popularity of such methods is because the oracle can fortuitously
be implemented as a support vector machine. Motivated by the success of centering
approaches in interior point methods, we propose a new approach to optimize the
MKL objective based on the analytic center cutting plane method (accpm). Our
experimental results show that accpm outperforms state of the art in terms of rate
of convergence and robustness. Further analysis sheds some light as to why MKL
may not always improve classification accuracy over naive solutions.
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1 Introduction

Kernel methods, for example the support vector machine (SVM), are a class of
algorithms that consider only the similarity between examples [1]. A kernel function
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226 S. Wulff, C.S. Ong

k implicitly maps examples x to a feature space given by a feature map & via the
identity k(x;, x;) = <d>(x,-), d(x j)). It is often unclear what the most suitable kernel for
the task at hand is, and hence the user may wish to combine several possible kernels.
One problem with simply adding kernels is that using uniform weights is possibly
not optimal. An extreme example is the case that one kernel is not correlated with
the labels at all, in such cases giving it positive weight just adds noise [2]. Multiple
kernel learning (MKL) is a way of optimizing kernel weights while training the SVM.
In addition to leading to good classification accuracies, MKL can also be useful for
identifying relevant and meaningful features [2-5]. MKL finds a convex combination
of kernels [6, 7], that is to find a classifier

p
fwb (6 ) =D Brc (Wi, D () + b

k=1

where § are the kernel weights corresponding to the p kernels, and w, b are the SVM
parameters. The MKL problem was first formulated as a semidefinite programming
SDP problem [6]. One can exploit the known structure of the MKL problem to speed
up the optimization, for example using an SMO-like approach [8]. However, this
requires a full reimplementation of the solver. MKL has also been recently shown to
be equivalent to group LASSO [9].

Recently, leveraging on the existence of efficient software for solving the SVM
optimization problem, a semi-infinite linear programming (SILP) approach was
developed in [7]. Their solution is based on the concept of cutting planes. Cutting
planes methods alternate between choosing query points and calling an oracle. Given
a query point, the oracle returns halfspaces to be included in the current set of
constraints, forming the feasible set. In the context of MKL, the oracle is an SVM
solver and the query points are kernel weights. One criticism of the SILP is that it
requires many cutting planes (and hence calls to the SVM) before convergence. This
gave rise to a subgradient based approach [10] and a bundle method [11].

Our contributions in this paper are as follows. We review MKL optimization in
an oracle based optimization framework and demonstrate that they are essentially
different ways of generating query points. We propose the use of the analytic center
as a query point since it would in expectation halve the hypothesis space. We conduct
experiments comparing the performance of several MKL solutions on UCI data.
We show that our more“regularized” approach often requires fewer iterations, and
is more robust to variations in data. The experimental results are followed by a
discussion about the correlation between the MKL objective and test accuracy.

2 Oracle based methods

Oracle based methods are widely used for solving integer programming problems.
Here we focus on using oracle based methods for solving convex optimization
problems [12]. The goal of oracle based algorithms is to find a point in a convex
set Z, or to determine if the set is empty (refer to Algorithm 1 for a pseudocode
description). In an optimization problem, Z is the set of e-suboptimal points. The
method does not assume any direct access to the description of Z, such as the
objective and constraint functions, except through an oracle. Instead the method
generates a query point ¢ (Section 2.2) which upon satisfying ¢ ¢ Z is passed to the
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ACCPM for multiple kernel learning 227

oracle (Section 2.1). The oracle returns a hyperplane which separates g from the set
Z . This hyperplane is called a “cut” since it eliminates a halfspace from our search,
which is the reason oracle based methods are also known as cutting plane methods.

2.1 Oracles and cuts

For a convex optimization problem with m constraints,

min; fy(z) )
s.t.  fi(z) <0, i=1,....,m
where fy, ..., fiy are convex and differentiable, the target set Z is the optimal

(or e-optimal) set. Given a query point g, the oracle first checks for feasibility. If g is
not feasible, then we choose one of the violated constraints f;(q) > 0 and form a cut

i@+ Vi@ (z—q <0 (2)

This cut (2) is called a feasibility cut for the problem (1) since it cuts away a halfspace
of points known to be infeasible (since they violate the jth constraint). If g is feasible,
we construct the cutting plane

Vo) (z—q) <0, (3)

which is called the objective cut for (1). This cuts out the halfspace
{21 Vfol@T(z—q) >0}

since all such points have an objective value larger than f;(q) and hence cannot
be optimal. If g is feasible and V fy(q) = 0 then g is optimal. In general, for non-
differentiable problems, the gradients V f;(z) can be replaced by subgradients.

Algorithm 1 Cutting plane algorithm for optimization
Require: an initial polyhedron P, containing Z.
t=0
repeat
Generate a query point g/ in P,
Query the oracle at g‘+P,
Oracle returns a cutting plane utllz < by
Update the constraints:
Prr = PN {zla) 2 < byl
t=t+1
until convergence or Py =0

2.2 Generating query points

In principle, we would like the query point ¢“*" corresponding to the current
polyhedron P, (containing the optimal set Z) to be generated such that the resulting
cut reduces the size of P, as much as possible. When querying the oracle with ¢+,
we do not know in which direction the generated cut will exclude, but we do know
that ¢“*" will be in the excluded halfspace. One approach is to greedily use the
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228 S. Wulff, C.S. Ong

vertex of the current polytope which minimizes the objective, leading to the following
method.

2.2.1 Method of Kelley—Cheney—Goldstein

For the optimization problem (1), the piecewise linear function

) = max fo(zi) + Vfoz) (2 — z)

is a lower approximation to fy(z). The next query point ¢“*V is found by solving

min 6
st. 0> folg) +Vog) (z—q), Vi<t 4)
Az < by,

where A,, b, are the set of existing cutting planes which define the current polyhe-
dron P,. In the rest of the paper we refer to the above method as the Kelley—-Cheney—
Goldstein method (KCG).

Using Hg;‘iig";“ instead of V fy(g,) in (4), results in finding the center of the largest

sphere. This variant of (4) is called the Chebyshev center method. This modification,
where the gradients are scaled to unit length, has significantly better convergence
properties [12]. This already shows the power of centering, which is exploited by the
following method.

2.2.2 Analytic center cutting plane method

The analytic center is a concept which has been popularized by interior point
methods. Given a constraint a; z < b, define the slack s; € R as s; = b; — a;' z, that
is, 5; is a measure of how close or how far the current solution is from the constraint.
An interior point of the feasible set is a point for which all the slacks are strictly

positive. The analytic center is defined as the unique maximizer of the function
t

f(s) = Hs,- where s € R is the vector of slacks of the current set of constraints
i=1

{u;z < b, i=1,...,t}. The geometrical interpretation of the analytic center is the

point that maximizes the product of distances to all of the faces of the polytope.

Maximizing the product of the slacks (e.g. instead of sum), ensures that every slack

is strictly positive. We can rewrite the analytic center as

t t
argmax f(s) = argmaxl_[s,- = argmaXZ log(b; — a] 2) (5)
Z

z i=1 < i=1

This function is also known as the logarithmic barrier, and its unique maximizer can
be efficiently found using Newton iterations [12].

Going back to the cutting planes framework, computing a point which is as far
as possible from the border of the feasible set, ensures that in every iteration the
resulting cut yields a substantial reduction of the size of the set. Theoretical analysis
of convergence in terms of oracle calls has been shown in [12].
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3 Multiple kernel learning

In this section, we briefly review MKL and derive the oracle function. We detail our
approach of query point generation using the analytic center and then review recent
MKL approaches in the framework of oracle based methods.

3.1 Review of multiple kernel learning

We follow the setting of finding a convex combination of kernels that performs well
in a SVM binary classification task [6, 7, 13], that is for a given training dataset
{(xi, yi)}i=1...n, find a classifier

P
fwb ) =Y Bic (Wi, Dx(x)) + b

k=1

where the kernel weights 8 and the SVM weights w, b are found by optimizing'

2
1 (<& -
. s
ﬂg}352<§ﬁk||wk||> + ;js
V4
SV yi Y Bi(We @(x)) +b > 1—&and & > 0. (6)
k=1

In this section, the indices i, j are used to range over the number of data examples 7.
The p mixing coefficients B (indexed by k) should reflect the utility of the respective
feature map for the classification task, and are normalized to be on the simplex, i.e.,

P
Y B=1Vk:B =04,

k=1

,BGAP::<,B

giving them the flavor of probabilities. This £, regularizer on B promotes sparsity,
and hence we are trying to select a subset of kernels [9]. We refer to (6) as the
primal problem. The dual formulation of the above problem is given by [6, 10] a
quadratically constrained quadratic program (QCQP),

wpy - X
1 2
) Wi (o)l (7)

Vi:0<o; <C
Z,‘Yioli:Q

where the margin term for the kth kernel is given by

s.t. Vk:y >

Iwi(@)I> =) " evieejyiy ki (xi, X)).
Lj

IEquation (6) is not identical to the original formulation in [6, 7], but has been shown to be
equivalent [13].
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230 S. Wulff, C.S. Ong

Following [7], we can move the sum of alphas into the constraints by changing
y' =y — > ;a;, and then convert the QCQP (7) by a second (partial, only w.r.t y)
dualization. The derivation w.r.t y recovers the simplex constraint on the kernel
coefficients B.

1 )
max min ijﬁk Iwi@)l” = 3o

1
s.t. Vi:0<o<C (8)

}:iyﬂm~::0.

We further derive our solution based on (8).

3.2 MKL solution in an oracle based framework

To remain consistent with (1) we change the objective sign, and define the following
function of the kernel coefficients

1
g0(B) =max} o~ ijﬂk Iwe (e

stVi:0< o <C )
Z,‘ yia; = 0.
Using the above definition, (8) becomes
min go(B)
’ (10)
s.t. Be AP

Observe that for a given B, evaluating go(8) amounts to an SVM call [7]. That
is, go(B) is exactly the dual formulation of the SVM, where the kernel is a linear
combination of the p kernels weighted by the coefficients 8. This allows us to use
an SVM solver as the oracle. The constraints on the dual variables o in (8) are
automatically satisfied by the SVM. Furthermore, since we use a feasible 8 for each
SVM call, we only ever perform objective cuts in the oracle based framework.

3.2.1 ACCPM for MKL

Motivated by the properties of the analytic center discussed in Section 2.2.2, we
propose to use it as the query point generation criteria.

Let B/, ! where [ =1,...,t— 1 denote the previous query points and the corre-
sponding SVM solver solutions. At iteration ¢, the analytic center (5) is given by

t—1

1
B = argmaleog 5 (Z B || wic(e)) ”2 _ Z,Bk | wic(ech) ”2> (11)
=1 k k

BeAP

The oracle then solves the single kernel SVM problem with B’ as the weighting
coefficients, to obtain «'. Next, the oracle computes the gradient of go(8), given by
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—é Wi (@) ||* with & = «'. Note that since we restrict the generation of B’sto B € AP,
the oracle only ever returns objective cuts (3), hence the new cut is given by

1 T
[ Im@| -8 <o (12)

Where the first term is a vector of the same length as g with values é Wi () ||
A pseudocode description of the analytic center cutting planes algorithm for
multiple kernel learning is given in Algorithm 2.

Algorithm 2 ACCPM for multiple kernel learning
Require: A set of p kernels, labeled sample {(x;, y;)}
initialize 8° = Ll, t=0.
repeat
Solve a! = go(B"), an SVM call with B’ as the kernel coefficients.

Compute the gradient as —é ”wk(a’) H2 for each kernelk =1,...,p
and the objective cut given in (12).

Solve B! the analytic center from (11).
t=t+1

until Duality gap (Section 3.2.3) is smaller than €.

3.2.2 Related work

In this section we review recent MKL work. We follow the order of presentation in
[12], Section 3.2 At iteration ¢, the lower approximation of gy (9), calculated by the
KCG method (Section 2.2.1) is

8i(B) = max go(B") + Veo(8) (B - B (13)

where B is the vector of kernel coefficients chosen in the /th iteration. Let &/ denote
the maximum over a corresponding to g’ i.e.,

1
o = argmaXZai —, Z,B,’( W () ||
« i k

Using the above definitions, one can verify that g;(8) can be rewritten as

1 2
! !
2B = rrllsatxZa,- ) Xk:ﬁk [wicted) | (14)
Therefore, the KCG query points are found by optimizing
B! = argming/(B) (15)
BeAr

The KCG method was applied to MKL in [5, 7] where (10) was further transformed
into a semi-infinite linear programming (SILP).

A subgradient based approach which use the gradient with respect to the kernel
weights was suggested in [10] (simpleMKL algorithm). One difficulty with subgra-
dient methods is determining the optimal step size to be taken in the direction of
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the subgradient. They use a one dimensional line search, which involves several calls
to the SVM solver. The subgradient method is memoryless, it does not utilize the
gradient computed in previous iterations. Since previous search directions could be
useful in finding a new search direction, a bundle method which projects the SILP
solution to the level set was proposed [11]. The extended level set bundle method
has been shown to converge faster than subgradient.

The level-set method chooses the projection of the previous query point into a
level set that is a weighted combination of the piece-wise linear lower approximation
of g,(B) and the tightest upper bound discovered so far.

gt = argmin[”ﬂ - B’Hz 18(B) = Lt}
BeAr

Li=2f+0-nf (16)
ft= 1mlln g0(BH best upper bound discovered so far.
<<t
f':=argmin g,(B) is the point chosen by KCG.
BeAP
3.2.3 Duality gap

The convergence of the duality gap is a natural stopping criteria for convex optimiza-
tion. Recall the primal MKL formulation in (6), for a specific value of the coefficients
vector 8 and the corresponding dual variables «, the primal objective is given by

P n
s e | v e (17)
k=1 ij i=1

The slack variables &; can be retrieved from
P
E=max [0, 1—y [ Y B ajki(xix)
k=1 j

The dual objective is given in (7)

max [W@)]* = D o (18)
Hence the duality-gap corresponds to: (17) — (18).

3.3 Implementation issues

One of the advantages of casting MKL as an oracle based method, lies in the
resulting modular solution structure of an oracle-SVM component and a query point
generator. Our implementation is a framework written in Python, having interfaces
defining an oracle and a query point generator, such that the actual implementation
can be easily replaced.
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We used shogun? as the oracle-SVM solver and for computing the kernels. In this
paper we only show accpm in the settings of binary classification. In principle, since
we use shogun as the SVM solver, we would easily be able to solve other learning
tasks supported by shogun. We used the software package OBOE? for finding the
analytic center. The query points that OBOE selects are minimizers of (5) plus a
proximal term. The optimization of the logarithmic barrier function is done using an
infeasible start Newton method. More details of the implementation can be found in
[14]. We used SWIGH* for creating a Python interface to OBOE (which is written in C).

For comparison purposes we implemented the Kelley—-Cheney—Goldstein query
point generation in our framework. We used mosek’s” python interface to solve the
linear program.

The software we used is available on the author’s homepage.

4 Computational results

In this section we benchmark recent MKL implementations using some UCI datasets
and compare their performance. We then empirically test some more general prop-
erties of MKL optimization.

The benchmarked MKL methods are the simpleMKL [10], the extended level set
method [11] (level-set) and our oracle based software with two different query point
generators. The analytic center (accpm) and our KCG method implementations
(kcg). The SILP [7] algorithm is another MKL solution based on the KCG method,
but we do not compare directly with this implementation.

As a point of reference for non MKL based approaches, we compare with a single
kernel SVM classifier. The kernel in use is the averaged sum of the candidate MKL
kernels, equivalent to uniform B weights. This solver is denoted here as “average”.

4.1 Experiments overview

We conduct our experiments on UCI repository datasets and consider three different
aspects of the solutions.

1. Performance analysis We compare the performance of the different imple-
mentations. We measure the number of SVM solver calls, the accuracy of the
solution, the actual running-time of computing a single MKL solution and the
number of kernels which are assigned non-zero weights. A similar experiment
is described in [10], where the performance of the SILP and the simpleMKL
implementations are compared. The experiment was conducted again by [11],
where the extended level set method was introduced. To be consistent with these
experiments, we follow the same general settings and test the performance on the
same UCI datasets.

Zhttp://www.shogun-toolbox.org
3https://projects.coin-or.org/OBOE
4http://www.swig.org

Shttp://www.mosek.com/
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2. Duality-gap convergence All of the MKL methods we consider incorporate an
iterative procedure while seeking the optimal solution. In every iteration a new
kernel coefficients vector is computed. For each such intermediate solution we
store the corresponding duality gap and compare the algorithm’s convergence
behavior.

3. Accuracy vs. duality-gap We look at the relation between the accuracy and the
duality gap at points gathered up during the run of the algorithms. While achiev-
ing high accuracy is a measure of generalization ability and is desirable in every
supervised learning task, the duality gap is the mathematical objective which is
actually being optimized. To our best knowledge the connection between the two
measures has never been studied before.

4.2 Experimental settings

We ran the five different implementations on eight UCI repository datasets: wbpc,
ionosphere, sonar, bupa, pima, vote, heart and wdpc (the first 5 were used by [10] and
the rest added in [11]). Similarly to [10] the candidate kernels were: Gaussian kernels
with 10 different width values o and Polynomial kernels of degree 1 to 3. All kernels
were computed with respect to all features and to every single feature separately.
Thus the total number of kernels per dataset is 13(d + 1), where d is the number of
features. We determined the widths of the Gaussian kernels by taking the Euclidean
distances between the training data points. We sorted the pairwise distances in an
increasing order and selected 10 kernel widths which are uniformly spaced on a log
scale between the 10 % and 90 % quantiles of this range. These values reflect the data
spread and are therefore potentially good candidate kernels (note that the Gaussian
kernel widths are different from [10], where the widths are fixed for all datasets).

As is common practice [7, 10, 11] all kernel matrices were normalized to have unit
trace and are computed prior to the run of the algorithm. Normalizing the kernel
matrices is necessary to prevent kernel matrices with larger values from artificially
getting more weight. Intuitively, each kernel can be seen as a different measure of
similarity. Having a larger similarity between the same elements lead to a larger
margin and is therefore preferred over a smaller one. An absurd case would be
to compare two kernel matrices, one which is just a scaled version of the other.
The C hyperparameter was set to 100, this value is the same as in [10] and [11].
The optimality of this value in terms of solution accuracy was verified by means of
cross-validation. As a starting point all of the candidate kernels were assigned equal
weights. Training examples were normalized to zero mean and unit variance. The
evaluation technique we used was 20 random (70 %, 30 %) splits of the data.

The stopping criteria we used was the convergence of the duality gap beyond a
threshold of 5e-03, or the number of iterations exceeds 500. Ideally the stopping
criteria would have been much lower, however the runs of level-set and simpleMKL
did not converge below this value on several training-set permutations of some of
the datasets. This is visible in Fig. 1 where the curves of the duality-gap along the
iterations of the algorithms are presented. A slightly higher threshold value was used
in [10] and [11].

In the performance comparison experiment, we report the accuracy, the run-time,
the number of SVM solver calls and the number of chosen kernels. The accuracy
is the average percentage of correct predictions made on the 20 test-sets. The

@ Springer



ACCPM for multiple kernel learning 235
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Fig. 1 Duality-gap convergence along the iterations for various datasets. The points (bars) are
computed as the average (and standard deviation) value over the 20 data splits of the duality gap
at a particular iteration

running time is the average running time in seconds until convergence, without
the accumulated time of the SVM solver. We subtract the SVM solver time in the
comparison since we use different implementations which use different SVM solvers.
In fact, since the datasets used here are rather small, the SVM solver run-time for
most of the implementation is negligible. Often MKL is used in applications where
the datasets are much larger and the SVM solver time becomes the dominant run-
time component. We therefore compare the average number of SVM calls used by
the algorithms to reach a single solution. The reported number of kernels is the
number of kernels assigned non-vanishing weights in the end of the run. These are
also the kernels that take part in prediction.

All of the implementations were run on an Intel(R) Core(TM)2 2.83GHz com-
puter running Redhat Linux.

4.3 Results
4.3.1 Performance analysis

Table 1 shows the performance results obtained by the different implementations.
For each dataset, n and p, denote the number of examples and number of kernels
respectively.
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Table 1 Performance comparison of the MKL solutions accpm, level-set [11], simpleMKL [10] and
kcg and the non-MKL, average, on UCI datasets using random data splits

Algorithm  #SVMcalls  Time (s) # Kernels # SVM calls Time (s) # Kernels
wpbc, n =138, p =442 pima, n =537, p =117

accpm 55.1+4.1 84+ 0.8 129+22 28.6+26 6.1 £ 0.6 127 +£3.2

Level-set 153.6 £25.4 404 +11.7 139+17 586+8.6 27.54+45 11.7+£1.5

simpleMKL 7882 +£201.3 174 +1.3 13.54+2.1 4669 4+ 128.8 49.8 +7.6 112+19

kcg 109.1 257 13.9+58 103+1.7 662 +14.6 13.5+3.1 82+1.1

Average 1.0 0.04 + 0.0 442 1.0 0.22 4+ 0.0 117
Ionosphere, n =245, p = 455 Vote, n =304, p =221

accpm 100.4 +9.4 585+17.0 15.74+2.6 34.75+2.49 27+04 147+5

Level-set 733 +£31.9 259+£185 184+1.8 1153+843 51.2+£924 10+25
simpleMKL 1273 £420.6 56.0£5.9 194+23 4792 £ 7708 872+ 111.7 92+£32

kcg 25554547 108.6+83.1 148+24 46.6+124 2.9+09 52+21

Average 1.0 00.14 £ 0.0 455 1.0 0.06 £ 0.0 221
Sonar, n =145, p =793 Heart,n =189, p =182

accpm 1334 +143 180.1 £68.6 21.7+1.7 462+47 3.1£05 11.3+1.3

Level-set 127.5+93 5524505 292419 8134347 8.8+ 6.6 147+16

simpleMKL 4464 +£2211  81.2+154 219+2 6502 +436.1 74+22 137+ 1.5

kcg 450.4 £483  602.7 £222.4 212+22 116.5+29.6 102 +£4.7 105+ 1.6

Average 1.0 0.14 +£ 0.0 793 1.0 0.04 +£0.0 182
Bupa,n =241, p =91 wdbc, n =398, p =403

accpm 252 +2.8 1.440.1 6.6+1.7 724+ 4.1 244437 133+14

Level-set 1239 +194 138435 77+13 115.7 £ 38.1 949 +388 98+1.5
simpleMKL 3327 +£142.6 43+14 76+18 1843.8 £1572.6 1782+34 105+13
keg 33+£72 21+£04 57+08 119.6 £14.3 288+42 104+1.1
Average 1.0 0.05+0.0 91 1.0 0.23 +0.01 403

Time is the average running time in seconds, number of SVM calls is the average number of calls
made during one run and the number of kernels is the number of kernels assigned non-vanishing
weights in the end of the run

In term of number of SVM solver calls, accpm achieves significantly better results
on most datasets. On 6 out of 8 datasets accpm uses the lowest number of SVM
calls, on the remaining 2 datasets accpm is either competitive or second to level-set.
The deviations in the number of solver calls shows that accpm is more robust with
respect to different data splits which is the cause of variation in the results of the
other methods. A very likely explanation is the centering approach.

We observe that the number of SVM solver calls made by simpleMKL is sig-
nificantly higher compared to the other methods. This can be attributed to the fact
that simpleMKL performs a line search, which involves several calls to the SVM
solver during the computation of a single new solution (update of the weights). In
all other implementations there is a one-to-one correspondence between an SVM
call and kernel coefficients update. The SVM calls invoked during the line search
can become cheap using warm start. For this reason as well as the fact that the
SVM implementations are different, we report the running time without the SVM
computations factor.
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Table 2 Accuracy results of the MKL methods vs. the average kernel

Dataset MKL accuracy “Average” accuracy
(%) (%)
wpbc 794 £ 64 785+5.5
ionosphere 93.1+£19 82.9+29
sonar 77.8 £5.5 68.8 +5.2
bupa 66.7 + 3.4 58.8 +2.7
pima 76.1 £2.4 75.0+£2.5
vote 95.6 +1.8 942 +2.1
heart 83.6 +34 843+ 3.1
wdbc 96.6 + 1.2 939+ 1.6

The numbers in the table represent the accuracy of accpm, however level-set, simpleMKL and kcg
method, achieve the same accuracy within the error range

Comparing the running time without the SVM computation time, accpm is the
fastest on 5 out of 8 datasets and is as fast as the fastest solution, kcg, on an additional
one. On the remaining 2 datasets level-set is the fastest algorithm. We will revisit this
fact later when considering the convergence behaviour.

The kcg method assigns less kernels with non-vanishing coefficients on most
datasets.

The accuracy results are presented in Table 2. All of the MKL solutions achieved
the same accuracy within the error range, hence the table only shows results of accpm
and the non-MKL solution “average”.

Considering the accuracy results, it is clear that for some datasets e.g. wbpc, pima
and heart, learning the kernel weights has no advantage over simply adding the
candidate kernels. In heart dataset the MKL approach is even slightly worse than the
averaging one (although still within the error range). We further discuss this point
when comparing the duality gap and accuracy.

4.3.2 Duality-gap convergence

We analyse the convergence behaviour of the various methods by comparing the
average duality gap at each iteration. Figure 1 shows the curves of changes in duality-
gap along the iterations of bupa, sonar, heart and vote.

The level-set method as well as simpleMKL, exhibit a sharp reduction in the
duality gap in the beginning of the iterative procedure.

However in most datasets after some iterations the duality-gap remains almost at
the same level or slightly increases, before it converges. It can be seen that a lower
convergence threshold value than the one used here, will not be reached on some of
data splits.

Accpm on the other hand convergences in a very steady manner. This can be
further seen in the convergence plots of the remaining datasets which are given in
the supplementary material. Again, this can be a result of choosing the center of
the set, where in each iteration, the size of the remaining feasible set is expected to
be reduced by roughly half. However, the point in which the two strategies cross,
is sometimes in a region of already sufficiently small duality-gap, resulting in an
advantage to a less regularized approach. For example in the curve depicting the
run on sonar.
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Fig. 2 Duality-gap vs. accuracy as generated by one run of accpm on ionosphere (left side) and sonar
(right side)

4.3.3 Accuracy vs. duality-gap

The aim of this experiment was to test the degree to which optimizing for the MKL
objective function yields good accuracy results. For each intermediate solution we
computed the accuracy and the duality-gap. Plots of the resulting accuracy-duality-
gap pairs of ionosphere and sonar are shown in Fig. 2. We choose to present these
two datasets as they demonstrate different correlation trends. We also computed
the average Pearson correlation scores, over 20 different data splits. The mean
correlation values are shown in Table 3. The results differ between the methods as
the intermediate solutions are different.

The results indicate that for some datasets there is no corresponding improvement
in test accuracy for a reduction in duality gap. From the accpm column of Table 3,
heart has the least (absolute) correlation, and indeed according to Table 2 heart
performs better with the average kernel. The other two datasets that show small
accuracy improvements with MKL (wpbc and pima) have also small absolute cor-
relations. It is not the whole story, as sonar which has a slightly higher correlation,
shows increase in accuracy with MKL.

The hope is that we can a priori (before running MKL) identify datasets where
MKL does not improve accuracy. Further, we may wish to change the MKL formu-
lation such that the objective function is a better guide to test accuracy.

Table 3 Mean Pearson correlation values between duality-gap and accuracy, on various UCI data

sets

Data set accpm levelset simpleMKL keg

wpbc —-0.25+0.5 —-0.34+03 —-0.24+0.3 —-0.33+0.3
iono —0.84 0.0 —0.53+£0.1 —0.74 £ 0.1 —-0.7 £ 0.0
sonar -0.34+03 0.1+0.3 —-0.324+0.2 —0.49 +£0.1
bupa —-0.74 £ 0.2 —-0.57+0.2 —-0.62 +0.2 —0.63+0.1
pima —-0.25+0.5 —0.17 £0.5 —-0.91 +£0.1 —0.824+0.2
vote —0.56 £ 0.4 —0.01 0.1 —0.79 £ 0.1 —0.78 £0.2
heart —-0.05+0.4 0.03+04 —0.69 + 0.4 —-0.76 £ 0.1
wdbc —0.754+0.2 —043+0.2 —0.58 £ 0.1 —0.89 +£0.1
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4.4 Relevance of performance measures

An SVM solver call is a fundamental step in the run of all of the benchmarked MKL
methods. The number of solver call is an important evaluation measure since this
would be the dominant computational cost when the size of the training set is larger
than the number of kernels in the linear combination, which is often the case in real
applications. This is simply due to the fact that the SVM is quadratic in the number of
examples whereas the query point generation only scales with the number of kernels.
Hence one may use a more expensive approach to choose the query points without
adversely affecting the total computational cost.

The running time can be useful in identifying trends in the run-time behavior of
the algorithms. In our experiments however, it can be misleading since the sizes of the
datasets are small which distorts the cost proportions and the compared methods use
different SVM solvers. To compensate for this we report the running time without
including the time taken by the SVM.

In this work we compare our method with several MKL solutions, which are
considered “state of the art” in this rapidly progressing field. Two approaches can be
taken when conducting such a comparison. One is reimplementing all the algorithms
in the same framework, and the other is reusing published code. Each approach has
its pros and cons in terms of providing the fairest comparison, this is not an easy
tradeoff. We chose to use the original software of SimpleMKL and level-set as we
believe it will be difficult to obtain an equally optimized code and wish to avoid using
a poor implementation. The main disadvantage of this approach is that comparing
the running-time is less meaningful.

5 Summary and future work

In general, oracle based methods can be used to solve cone programming problems
which covers a large class of machine learning tasks. From an implementation
viewpoint, what is required is a decomposition of the problem such that it is easy
to implement the oracle or there is already an existing implementation.

We have shown the benefit of choosing a central point when using an alternating
optimization method for multiple kernel learning. The experiments demonstrate
that our more “regularized” approach often requires fewer iterations, and is more
robust to variations in data. Further, empirically it has a smooth convergence curve,
in contrast to previous methods. With the availability of software for computing
both the oracle (shogun) and the analytic center (OBOE), we also demonstrate the
synergies of software reuse and open source software.

In addition, our work offers some meaningful insights concerning MKL opti-
mization. We believe that this line of research can potentially lead to means of
characterizing data as such than can benefit from the use of kernel learning.

Appendix: Supplemental material

In the performance comparison experiment we report the number of SVM calls used
by each of the compared solutions before reaching a single solution (see Table 1).
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SimpleMKL performs subgradient descent and uses multiple SVM solver calls in
each subgradient iteration. Therefore the number of SVM calls does not reflect the
number of subgradient iterations used by simpleMKL.

Table 4 presents the number of subgradient iterations used by simpleMKL in the

computation of a single solution for each of the benchmarked datasets.

Table 4 number of
simpleMKL subgradient
iterations

Dataset
wpbc
Tonosphere
Sonar
Bupa

Pima

Vote
Heart
wdbc

# Subgradient iterations

33.0£15.5
68.4£19.4
187.2 £87.3
242 £11.7
39.1 £12.6
134.70 £ 184.43
40.35 +£22.30
79.30 £ 55.37

The plots in Fig. 3 show the changes in duality-gap along the iterations of accpm,
level-set method, simpleMKL and kcg.
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Fig. 3 Duality-gap vs. iterations on UCI datasets which were not included in the paper
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