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a b s t r a c t

We consider the design problem of collecting temporal/longitudinal data. The adaptive
smoothing spline is used as the analysis model where the prior curvature information
can be naturally incorporated as a weighted smoothness penalty. The estimator of
the curve is expressed in linear mixed model form, and the information matrix of
the parameters is derived. The D-optimality criterion is then used to compute the
optimal design points. An extension is considered, for the case where subpopulations
exert different prior curvature patterns. We compare properties of the optimal designs
with the uniform design using simulated data and apply our method to the Berkeley
growth data to estimate the optimal ages to measure heights for males and females.
The approach is implemented in an R package called ‘‘ODsplines’’, which is available
from github.com/jialiwang1211/ODsplines.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Data collection can be costly preventing researchers from performing measurements on the continuum. Optimal design
concerns the matter of planning for the collection of data from experiments in an efficient manner. In a broad sense,
randomization, blocking and replication are the fundamental principles when designing an experiment and there is a vast
literature on these topics (Atkinson et al., 2007; Montgomery, 2017). In biological and agricultural studies, researchers
often monitor the growth of plants, for example, responses to stress conditions over time and different growing trajectories
with different genotypes. Even with modern high-throughput automatic scanning platforms, cost and time constraints
may still make collecting high-frequency data from a large number of biological replicates unrealistic. Therefore, principled
guidance for collecting data is required to maximize the information gain from limited data and reduce bias when making
an inference. In this article, we limit our attention to the design problem when collecting temporal/longitudinal data, that
is, when to perform measurements of the experimental units over time in order to best capture the true behaviour of the
system being observed.

The optimality of a design depends upon the statistical model that will be used to analyse the data. Consider the model
y = η(t, β)+ϵ, where t denotes time, y denotes the response and β is the vector of model parameters. Note that while we
use time t as the time ordinate in this paper, more generally the ordinate can be of other types, such as dose concentration
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in a dose–response curve. The design objective with respect to this model is to find the vector T ∗
= (t∗1 , . . . , t

∗
n )

T (which
we refer to as the ‘optimal design’ or the set of ‘optimal design points’).

Various choices of linear model can be applied to time dependent data, for example, a polynomial regression model
with Gaussian noise. The information matrix of the parameters can be estimated using the method of least squares
and does not depend on β, hence the solution T ∗ is independent of the parameter values of the fitted curve. However,
linear models can be too restrictive for describing a dynamic system and are prone to under-/over-fitting. Parametric
nonlinear models can be fitted instead, for example, three-parameter logistic model and Gompertz model (Paine et al.,
2012). Linearization by Taylor expansion about a parameter value β∗ can be used to convert the nonlinear model into
linear model form, however a prior knowledge of β∗ is then required (Atkinson et al., 2007, Chapter 17) to derive the
optimal design. Optimal design for the logistic model has been studied in Li and Majumdar (2008) and for the Gompertz
model in Li (2012). As an alternative, the Bayesian approach to optimal design incorporates uncertainty in the parameter
values when constructing the objective function by averaging the information matrix over the prior distribution of the
parameters; see Chaloner and Verdinelli (1995) for a review, and Donev et al. (2008) for an application.

Nonlinear models with few parameters may remain insufficiently flexible in many applications, and optimal designs
derived from these models can be very sensitive to the choice of β∗. Instead we consider nonparametric models,
specifically the smoothing spline as the analysis model from which optimal designs are derived. Due to its nonlinear
nature, solving the design problem for smoothing spline also requires prior knowledge about the parameters (potentially
in a high dimensional space), and choosing a good prior is challenging. There has been extensive research on knot
selection for fitting spline models after the data have been collected (Miyata and Shen, 2003; DiMatteo et al., 2001),
but there is a relative sparsity of literature on the determination of design points prior to conducting an experiment. Park
(1978) derived the D-optimal design for segmented polynomial regression with a single knot. Some extensions were
made by Kaishev (1989) and Heiligers (1998), to consider an arbitrary number of knots and multiplicities in polynomial
spline regression. In these cases, knots did not need to coincide with the design points and did need to be determined
as the prior input. Dette et al. (2008) indicated that the optimal designs were not necessarily robust with respect to
the prior guess for the vector of knots, and they proposed a standardized maximin D-optimal design for free knot least
square splines which they found was less sensitive to the specification of the unknown knots. Instead of working with
polynomial splines via least squares, Dette et al. (2011) assumed the curve was estimated from a smoothing spline where
the smoothness was controlled by the smoothing parameter λ, and they derived the information matrix via a system of
new basis functions. The prior knowledge that was required to optimize the design was the level of smoothness, and
they showed through simulations that as the smoothing parameter increased, G-optimal design points became more
concentrated at the boundaries of the design region, but that D-optimal design points were less affected. Notice that
in Dette et al. (2011), the design points were distributed symmetrically across the design interval due to the fact that
the only prior knowledge used in optimization was the global smoothness parameter λ, so that no local properties could
be incorporated into the design. It is worth noting that there are some recent works on D-optimal designs for active
learning in the discipline of computer vision and they were primarily applied to determine the unlabelled data to better
the separation of images (He, 2009; Gu and Jin, 2013). The neighbourhood structure of the data was preserved by imposing
a similarity based locality preserving regularizer, based on the prior belief that if two points are close to each other, their
measurements should be close as well.

In this paper, we propose incorporating the curvature (or second derivative/acceleration) of the curve as the prior
information for optimization. The prior curvature knowledge is particularly informative when determining optimal
sampling points for longitudinal data, because intuitively more observations should be placed at the locations where
the shape of the curve is changing rapidly. To the best of our knowledge, including curvature as the prior information in
a smoothing spline optimal design problem has not been explored in the literature.

The paper is structured as follows. In Section 2, we review the adaptive smoothing spline model and show how
curvature information can be incorporated naturally into the design problem. Under some mild conditions, the estimated
curve can be represented in matrix form similar to the natural cubic spline, which has the equivalent linear mixed model
formulation. The D-optimality criterion is used to define the optimization problem. A numerical approach to finding
the optimal design points is then outlined. In Section 3, we consider the issues involved in obtaining prior curvature
information from historical data, as well as choosing the smoothing parameter and the number of design points. In
Section 4, two simulation studies are performed for growth curves that are assumed to follow a logistic model, and a
mixture parametric model. We compare the optimal design with the uniform design with respect to the distribution of
the design points and goodness-of-fit. The female height data set from the Berkeley Growth study (Tuddenham, 1954) is
used as a real data example. In Section 5 we consider the determination of optimal design points where subpopulations
with different curvature patterns exist. Results from a third simulation for two logistic curves are presented and the
Berkeley Growth study data set with both males and females is used to illustrate this scenario. Section 6 concludes the
paper and presents some future research directions.

2. Optimal designs for adaptive smoothing splines

Consider the model fitted to the data

yi = g(ti) + ϵi, i = 1, . . . , n, (1)
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where ϵ = (ϵ1, . . . , ϵn)T ∼ N(0, σ 2R). Without loss of generality, we assume the residuals are independent and identically
distributed, such that R = In, and the design points t1, . . . , tn are distinct and bounded within the design region T :
t1 < t2 < · · · < tn−1 < tn ∈ T = [0, 1]. To estimate a smooth curve, we minimize the residual sum of squares

n∑
i=1

(yi − g(ti))2,

for all possible g from the set

F = {g : g (m) is continuous, m = 0,1,2 and
∫ 1

0
[g ′′(t)]2dt < ∞ |

∫ 1

0

[g ′′(t)
f ′′(t)

]2dt < S},

for some positive number S. The function f ′′(t) is the curvature, which must be specified as the prior input. Denote
λ(t) = 1/[f ′′(t)]2. We assume that λ(t) is bounded integrable on [0,1] and 1/λ(t) is integrable on [0,1]. An estimator
of g can be found as the solution to the minimization problem

min
g∈F

{ n∑
i=1

(yi − g(ti))2 + ρ

∫ 1

0
λ(t)[g ′′(t)]2dt

}
, (2)

where ρ is the smoothing parameter.
Model (2) has been studied in Pintore et al. (2006) where the solution is given by reproducing kernels within a

reproducing kernel Hilbert space (Wahba, 1990). The time dependence of λ(t) makes the spline model adaptive, in that
different smoothness penalties are applied at different times t . In Pintore et al. (2006), λ(t) is estimated from the data
through generalized cross validation, whereas in our design problem, we treat λ(t) as a prior function based on the prior
curvature f ′′(t). The term

[
g ′′(t)/f ′′(t)

]2 can be interpreted as a weighted roughness penalty, so that the smoothness of
the curve is not globally uniform but is scaled by the prior knowledge of the curvature. The optimization problem (2) thus
achieves a trade-off between goodness-of-fit and the weighted smoothness of the fitted curve. The tuning parameter ρ

is subject to selection, and we will discuss the choice of ρ in Section 3.2.

2.1. Constructing adaptive smoothing splines

When constructing the spline model, we assume a polynomial of order 4 between any two interior knots and continuity
between segments up to order 2, as well as linear functions at the two endpoints of the fitting interval. Given these
conditions, we can now derive the estimated curve ĝ as the solution to (2) at the knots in matrix form.

Theorem 1. Denote the knot–response data pairs as (t1, y1), . . . , (tn, yn), the knots vector T = (t1, . . . , tn)T and the response
vector y = (y1, . . . , yn)T . Assume for each interval [ti, ti+1], i = 1, . . . , n − 1, there exists λi, such that∫ ti+1

ti

λ(t)[g ′′(t)]2dt = λi

∫ ti+1

ti

[g ′′(t)]2dt. (3)

At the knots T , an estimator of g that solves the minimization problem in Eq. (2) is

ĝ = (In + η∆G−1G∗G−1∆T )−1y, (4)

where η =
4
3ρ, hi = ti+1 − ti, ∆ is a matrix of dimension n × (n − 2) with non-zero elements

δi,i =
1
hi

, δi+1,i = −(
1
hi

+
1

hi+1
), δi+2,i =

1
hi+1

;

G is a matrix of dimension (n − 2) × (n − 2) with non-zero elements

gi,i =
1
3
(hi + hi+1), gi,i+1 = gi+1,i =

1
6
hi+1;

G∗ is a matrix of dimension (n − 2) × (n − 2) with non-zero elements

g∗

i,i =
1
3
(hiλi + hi+1λi+1), g∗

i,i+1 = g∗

i+1,i =
1
6
hi+1λi+1.

Proof. See Appendix A. □

Corollary 1. When the prior curvature function is constant, Eq. (4) simplifies to the solution for natural cubic spline (Green
and Silverman, 1993, Chapter 2).
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Proof. Since the prior curvature function is constant, λ(t) = λi = c, t ∈ T , i = 1, . . . , n− 1, where c denotes a constant
value. Then G∗

= cG . The estimator in Eq. (4) is

ĝ = (In + η∆G−1G∗G−1∆T )−1y
= (In + ηc∆G−1GG−1∆T )−1y
= (In + η′∆G−1∆T )−1y,

where η′
= ηc is a smoothing parameter. □

There are a few points to note here. Firstly, in the optimal design problem, we assume that the locations of the design
points coincide with the knot locations. Secondly, Pintore et al. (2006) assumed that λ(t) was piecewise-constant with
jumps at the knots, but we replaced this assumption with (3), hence for each interval [ti, ti+1] we assume that there exists
a ‘representative’ constant λi. This assumption enables us to remove the dependence on λi from the integrand, and hence
represent ĝ in an elegant form. We will discuss how to approximate λi from prior knowledge using the curvature f ′′(t)
in Section 3.1.

2.2. Linear mixed model representation

We represent y = ĝ + ϵ, ϵ ∼ N(0, σ 2In) in a linear mixed model form, similar to Wang (1998) and Verbyla et al.
(1999).

Theorem 2. Using the same definitions of the matrices as in Theorem 1, a re-formulation of (4) is

ĝ = X β̂ + Zũ,

ũ ∼ Nn−2(0, γ G̃),
(5)

where γ = σ 2/η, G̃ = G(G∗)−1G , X = (1, T ) is a matrix of dimension n × 2 whose first column 1 is a vector of 1, and the
second column T = (t1, . . . , tn)T is a vector of the design points, and Z = ∆(∆T∆)−1.

The proof of this result follows the same reasoning as in Verbyla et al. (1999), Appendix A.
In the term Zũ of Eq. (5), both the design matrix Z and the random effects ũ are functions of T . Recall that in the design

problem, the aim is to minimize the sampling variance of the parameters by choosing the values of the input variables T
from the design region, so it is desirable to remove the dependence of ũ in Eq. (5) on t , by applying the transformation
defined in the following corollary.

Corollary 2. Let Z = ZG̃
1
2 , ũ = G̃

−
1
2 ũ, where G̃

1
2 is the square root of matrix G̃ such that G̃

1
2 G̃

1
2

= G̃ . The equivalent
representation of Eq. (5) is

ĝ = X β̂ + Z ũ,

ũ ∼ Nn−2(0, γ In−2),
(6)

Proof. Firstly, the expressions for the estimator ĝ are equivalent in (5) and (6), since

ĝ = X β̂ + Z ũ = X β̂ + ZG̃
1
2 G̃

−
1
2 ũ = X β̂ + Zũ.

Secondly, the distributions of the random effects in (5) and (6) are the same, since

ũ ∼ Nn−2(0, γ G̃) ⇔ ũ ∼ Nn−2(0, G̃
−

1
2 γ G̃G̃

−
1
2 ) ⇔ ũ ∼ Nn−2(0, γ In−2). □

2.3. The D-optimality criterion

There exist a range of alphabetic optimality criteria to achieve different design objectives, but in this paper, we focus
on the D-optimality criterion. Extensions to other optimality criteria are briefly discussed in Section 6. The D-optimality
criterion minimizes the negative log-determinant of the information matrix, and has the geometrical interpretation of
minimizing the volume of the ellipsoidal confidence region for the parameters (Atkinson et al., 2007, Chapter 10). The
D-optimality criterion is an appropriate choice, because our interest lies in obtaining an accurate estimation of the entire
curve, and D-optimality minimizes the overall variance of the parameters that define the spline model. From Eq. (6), the
best linear unbiased estimator (BLUE) of β and the best linear unbiased predictor (BLUP) of u are

β̂ = (XTH−1X)−1XTH−1y,

ũ = (ZTZ + γ In−2)−1ZT (y − X β̂),
(7)



J. Wang, A.P. Verbyla, B. Jiang et al. / Journal of Statistical Planning and Inference 206 (2020) 263–277 267

where H = σ 2(In−2 + (1/γ )ZTZ) and

var
[
β̂ − β

ũ − u

]
= σ 2

[
XTX XTZ
ZTX ZTZ + ηIn−2

]−1

(8)

Hooks et al. (2009) derived the D-optimality criterion for the linear mixed model which incorporating both fixed and
random effects. Denoting the information matrix in (8) by

M =

[
XTX XTZ
ZTX ZTZ + ηIn−2

]
,

then the D-optimal design points T ∗ are found by solving

min
T

− log(det(M))

⇔ min
T

− log(det(XTX)det(ZTZ + ηIn−2 − ZTX(XTX)−1XTZ))
(9)

The variables T are highly nonlinear in the optimization problem in (9), which complicates the evaluation of the
gradient as required in the optimization routine. Therefore we use the Hooke–Jeeves derivative-free algorithm as
implemented in the R package ‘dfoptim’ (Varadhan et al., 2016) to solve the optimization problem, without requiring
evaluation of the gradient. Moreover, we introduce a set of slack variables to avoid singularity and impose constraints
on the design points. If we let s1 = t1, s2 = t2 − t1, . . . , sn = tn − tn−1, then we can impose the box constraints
si > δi, i = 2, . . . , n, to guarantee that any two successive design points are separated by a meaningful distance, for
example, two successive measurements ti and ti+1 cannot be repeated within time δi.

We also add a penalization term ek2(
∑n

i=1 si−k1) (with k2 taken to be a large positive number) to the objective function in
(9) to prevent the last design point tn =

∑n
i=1 si exceeding the upper bound k1 of the design region. For all the simulations

and data applications in this paper, we chose δi = 0.001 as the minimal distance between two successive measurements,
k1 = 1 as the upper bound of the design region and k2 = 500 as an adequately large number. Now the optimization
problem becomes

min
S

−log
(
det(XTX)det(ZTZ + ηIn−2 − ZTX(XTX)−1XTZ)

)
+ ek2(

∑n
i=1 si−k1)

s.t. si > δi, i = 2, . . . , n,
(10)

with the optimization variables S = (s1, . . . , sn)T . Then, the optimal design points T ∗ can be obtained by back-
transformation the slack variables S∗ found as the solution to (10).

3. Prior information

From our formulation (9), the optimal design is influenced by the inputs λ(t) (embedded in Z), η and n. In this section
we discuss some practical issues in estimating λ(t) from historical data and when choosing the values of the smoothing
parameter η and the number of design points n.

3.1. Estimation of λ(t)

Recall from Section 2, λ(t) =
1

[f ′′(t)]2
, where f ′′(t) is the prior curvature function chosen to reflect the expected

behaviour of the curve. Previous studies have suggested some nonlinear parametric forms as surrogates for the plant
growth modelling (Paine et al., 2012), in which case such a model can be assumed as prior information and the second
derivative can be computed analytically. Alternatively, historical data from a similar experiment could be used to estimate
the prior curvature information for the current design problem. In such cases, second order differences could be used to
estimate the second derivatives at discrete time points ti

f ′′(ti) ≈ (
yi+1 − yi
ti+1 − ti

−
yi − yi−1

ti − ti−1
)/(

ti+1 − ti−1

2
), (11)

and f ′′(t) is assumed piece-wise constant between the discrete time points. With slightly more effort, a smooth curve
fit could be estimated using a basis function expansion and hence used to estimate f ′′(t) function. The curve f (t) can be
represented by K basis functions φ = (φ1, . . . , φK )T as follows

f (t) =

K∑
k=1

ckφk(t) = cTφ, (12)

where the basis functions are often chosen to be the Fourier basis for periodic data or a B-spline basis for non-periodic
data. Let Φ be the n×K matrix that contains the basis functions for all the observations, then the least squares estimates
of the coefficients c are given by

ĉ = (ΦTΦ)−1ΦT y. (13)
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Alternatively, a smoothed curve can be fitted using a penalization approach. The curve is expanded by basis functions
as in (12) with a roughness penalty

PEN =

∫ 1

0
D(m)f (s)ds = cT [

∫ 1

0
D(m)φ(s)D(m)φT (s)ds]c = cTPc, (14)

where D(m) is the mth order derivative operator and the coefficients c can be estimated as

ĉ = (ΦTΦ + λf P)−1ΦT y, (15)

where λf is the smoothing parameter in f .
Evaluating the second derivative of the curve is straightforward given a basis function expansion, since f ′′(t) can be

computed by taking the second derivative of the basis functions multiplied by the coefficients ĉ from (13) or (15)

f ′′(t) = D2ĉ(t) = ĉTD2φ(t). (16)

After obtaining the curvature estimate f ′′(t), a ‘representative’ λi between two design points [ti, ti+1] in Eq. (3) can be
obtained by

λi = 1/
(∫ ti+1

ti
[f ′′(t)]2dt

ti+1 − ti

)
. (17)

For reasons of numerical stability and ease of choosing the smoothing parameter η, we divide λ(t) by its maximum
value in the design region as λ(t)

maxt∈T λ(t) , so that λ(t) is between 0 and 1.

3.2. Choosing η

The tuning parameter η (= 4
3ρ) in (9) controls the trade-off between goodness-of-fit and weighted smoothness of the

curve. Decreasing η allows the prior curvature information to more strongly influence the construction of the optimal
design. Therefore, a smaller value of η should be chosen when there is a strong belief that the curvature of the data to be
collected will closely follow the prior curvature. We show in Simulation 1, that the design points are relatively insensitive
to the choice of η for small to moderate values. However for large η, the design points are pushed towards the boundaries
of the design region. In other simulations and real data examples, we fix η = 1. It is recommended to perform a sensitivity
analysis over a range of η.

3.3. Choosing n

The optimal design problem also depends on the number of design points n. In this paper we treat n as fixed and
vary the locations of the design points in the optimization problem. Treating n as another parameter to be determined
when optimizing the location of the design points turns out to be a difficult problem for the following reasons. Firstly,
for a parametric model with p parameters, the general equivalence theorem (Kiefer, 1974) shows that a D-optimal design
has at most p(p − 1)/2 support points, and the number of minimally supported points is p. However there are infinite
number of parameters in a nonparametric model, so that the general equivalence theorem cannot be applied here.
Secondly, the matrix M in (9) which defines D-optimality changes its dimension and the composition of fixed effects
and random effects as the number of design points changes (Verbyla, 2019). Therefore, the log-determinant of M is not
comparable between different n. While we do not propose a principled approach to choosing n, it is suggested to plot
the prior curvature function to assess its shape, since intuitively, more design points will be needed for curves exhibiting
complicated behaviour than for simple curves.

It is expected that the goodness-of-fit increases with more data points, however, improvements can be negligible as
n increases beyond a certain value. Furthermore, as n increases, the gain in goodness-of-fit from the optimal design is
often marginal when compared to the uniform design having the same n, therefore, considering the optimal design is
the most beneficial when n is relatively small. Empirical support for these assertions is provided in Section 4.3 using
the Berkeley growth data for females. In addition, the choice of n will be restricted by practical limitations of the data
collection process, particularly cost considerations. Similar to the choice of η, it is recommended that designs for a range
of n values be explored, in order to ensure that the selected n will provide sufficient coverage across the design region,
particularly in areas of high curvature.

4. Simulations and real data applications

Here we conduct two simulation studies and apply our method to the Berkeley growth data for females. In the first
simulation, we assume the growth curve follows a three-parameter logistic model, and derive optimal designs for a range
of values of the smoothing parameter η and the number of design points n. The special case assuming constant curvature
is presented in Appendix B, which reduces to the formulation of Dette et al. (2011) when m = 2. In the second simulation,
we generate a more complicated growth curve that cannot be modelled by a simple nonlinear parametric model. In the
simulations, we compare the optimal design with the uniform design in terms of the distribution of the design points and
the goodness-of-fit. The application to the Berkeley growth data for females is presented in Section 4.3, and for males in
Appendix C.
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Table 1
Simulation 1, optimal design points T o and uniform design points T u for n ∈ {4, 5, 6}
and η ∈ {0.1, 0.5, 1, 10, 100, 1000}.
η n T u T o

0.1

4 0.00 0.33 0.67 1.00

0 0.36 0.64 1
0.5 0 0.36 0.64 1
1 0 0.36 0.64 1
10 0 0.37 0.63 1
100 0 0.36 0.64 1
1000 0 0 1 1

0.1

5 0 0.25 0.50 0.75 1

0 0.31 0.50 0.69 1
0.5 0 0.31 0.50 0.69 1
1 0 0.31 0.50 0.69 1
10 0 0.31 0.50 0.69 1
100 0 0 0.5 1 1
1000 0 0 1 1 1

0.1

6 0 0.2 0.4 0.6 0.8 1

0 0.31 0.50 0.65 0.77 1
0.5 0 0.23 0.32 0.49 0.69 1
1 0 0.24 0.36 0.64 0.76 1
10 0 0.26 0.33 0.67 0.74 1
100 0 0 0.37 0.63 1 1
1000 0 0 0 1 1 1

4.1. Simulation 1: logistic growth curve — effect of η and n on the distribution of design points

We consider the 3-parameter logistic curve

f (t) =
β1

1 + eβ2t+β3
, (18)

where β1 is the asymptotic plateau, and −β3/β2 is the location of the point of inflection of the curve on the time axis.
Taking the second derivative of f (t), λ(t) has the closed form solution

λ(t) =
1

[f ′′(t)]2
=

[1 + eβ2t+β3 ]6

β2
1β

4
2 [eβ2t+β3 − e2(β2t+β3)]2

. (19)

In this simulation, the parameters were set as β1 = 1, β2 = −10, β3 = 5, and optimal designs were obtained for
all combinations of η ∈ {0.1, 0.5, 1, 10, 100, 1000} and n ∈ {4, 5, 6}. We compare each of the optimal designs to the
corresponding uniform design, in which the n design points are equally spanned over [0,1].

Table 1 lists the distributions of the uniform design T u and the optimal design T o under different simulation settings.
For fixed n, increasing η moves the optimal design points towards the two boundaries, whereas decreasing η anchors the
optimal design points at the locations with largest curvature values. This is also illustrated in Fig. 1 where we plot the
logistic curve and its corresponding curvature function, and superpose the uniform and optimal design points for n = 6
and η ∈ {1, 100, 1000}. The optimal design points are symmetrically distributed about the inflection point, because the
curvature function is antisymmetric about this point. All of the designs include the two boundaries as design points to
capture the starting point and the asymptote of the curve. For η = 1000 (very large), all the design points are located
at the boundaries (three on each side); when η = 100 (moderate), two of the design points are placed at the locations
associated with the largest curvature values and four at the two ends; when η = 1 (small), two interior points are still
placed at the large curvature locations with another two points not far away from them and two points at the boundaries.

4.2. Simulation 2: logistic growth curve with perturbation — comparing goodness-of-fit between optimal and uniform designs

We consider the mixture parameter model

f (t) =
β1

1 + eβ2t+β3
− 0.02

1
σf

e
−(t−µ)2

2σ2
f . (20)

The curvature function is more complicated, but still has a closed form expression, and λ(t) can be computed analytically

as λ(t) =
1

[f ′′(t)]2
= 1/

[
β1β2

2

(
eβ2t+β3−e2(β2t+β3)

)
(1+eβ2t+β3 )3

−
0.022

σ4
f

e
−(t−µ)2

2σ2
f ( (t−µ)2

σ2
f

− 1)
]2

.

The parameters were chosen as β1 = 1, β2 = −10, β3 = 5, σf = 0.002, µ = 0.7. Fig. 2 plots this growth curve,
which mimics a scenario in which the growth of a plant is impacted by a stress treatment halfway through the experiment,
before normal growth conditions are resumed. In this simulation we fixed η = 1 and obtained optimal and uniform design
points for n ∈ {8, 9, 10, 11, 12}. For each set of design points, we simulated data from f (t) + N(0, 0.012) at each design
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Fig. 1. Upper panel: the logistic curve. Lower panel: the corresponding curvature with uniform and optimal design points for n = 6 and
η ∈ {1, 100, 1000}. Note that two points and three points coincide at each of the two boundaries when η = 100 and η = 1000 respectively.

Fig. 2. Upper panel: the true logistic curve with perturbation and estimated smoothing splines with knots located at the uniform and optimal design
points respectively, for η = 1, spar = 0.1 and n = 9. Lower panel: the corresponding curvature function with superposed uniform and optimal
design points.
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Table 2
Simulation 2, optimal and uniform design points T and mean square error (MSE) between the estimated
curve and the true curve for η = 1, spar ∈ {0.1, 0.2} and n ∈ {8, 9, 10, 11, 12}. A lower MSE implies
a better goodness-of-fit.
n Method T Spar MSE

(*E+04)

8
OD 0.00 0.23 0.35 0.45 0.61 0.70 0.81 1.00 0.1 1.076

0.2 4.435

Uniform 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 0.1 3.569
0.2 4.817

9
OD 0 0.23 0.35 0.45 0.60 0.69 0.77 0.83 1 0.1 0.787

0.2 2.029

Uniform 0 0.12 0.25 0.38 0.50 0.62 0.75 0.88 1 0.1 7.791
0.2 9.680

10
OD 0 0.19 0.29 0.37 0.45 0.58 0.64 0.71 0.81 1 0.1 1.635

0.2 1.168

Uniform 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1 0.1 3.055
0.2 4.706

11
OD 0 0.19 0.29 0.37 0.45 0.58 0.64 0.70 0.77 0.83 1 0.1 0.700

0.2 1.038

Uniform 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.960
0.2 1.282

12
OD 0 0.16 0.25 0.32 0.39 0.46 0.58 0.64 0.70 0.77 0.83 1 0.1 0.676

0.2 0.967

Uniform 0 0.09 0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 1 0.1 0.783
0.2 1.697

point, then used these data to fit cubic smoothing splines over the range [0,1] using the function ‘smooth.spline’ in R
(R Core Team, 2018) for two choices of the smoothing parameter spar ∈ {0.1, 0.2}. The knots were chosen to be the
same as the sampling (design) points. We repeated generating data 100 times. The mean square error (MSE) of the curve
was defined as

MSE =
1

101

101∑
i=1

(f̂ (ti) − f (ti))2, (21)

which averages the squared differences between the estimated cubic spline fit f̂ and the true curve f over 101 equally
spaced grid points at ti = 0, 0.01, . . . , 0.99, 1, which provides a measure of the goodness-of-fit over the entire curve.

Fig. 2 compares the distributions of the optimal design points with the uniform design points, and the estimated curves
with knots located at these two sets of design points respectively. The upper panel shows that the true curve (solid line)
has a dip around t = 0.7 which is not captured by the uniform design points, but is captured by the optimal design
points when fitting smoothing splines with spar = 0.1 and n = 9. As a consequence, the estimated smooth curve for the
uniform design points fails to accurately capture the behaviour of the data in the vicinity of the stress treatment around
t = 0.7, whereas the estimated smooth curve resulting from the optimal design points adheres well to the true curve. The
lower panel of the plot displays the optimal and uniform design points, and the optimization of the design has selected
points that lie close to the peaks in the curvature function.

Table 2 confirms that the MSEs for the optimal designs are smaller than those from the uniform designs with the same
n and spar, indicating a better goodness-of-fit by sampling at the optimal design points.

4.3. Berkeley growth data for females

In real data applications, the prior curvature is unknown and hence needs to be estimated from historical data. In this
section we derive an optimal design for the growth curve of females using the Berkeley growth data (Tuddenham, 1954).

In the Berkeley growth data set, the heights of 54 girls were measured at 31 unequally spaced ages. Four measurements
were taken between ages one and two, followed by six measurements annually up to age eight, then two measurements
per year until the individual reached eighteen years of age (Fig. 3). A prior curvature function for use in developing an
optimal design was estimated by the penalized smoothing spline method as described in Eqs. (14)–(16). We penalized
the derivatives of order three (m = 3 in Eq. (14)) and used the B-spline basis functions of order six to fit the smoothing
spline. The tuning parameter λf was chosen by cross-validation. Because the timing and intensity of the growing
trajectories differed between individuals, we performed a continuous registration to improve the estimation of curvature
by minimizing the second eigenvalue for the matrix defined by the original curve and the registered curve (Ramsay and
Silverman, 2005, Chapter 8). As noted in the lower panel of Fig. 3, the curvature values are amplified for some ages after
registration, and the registered curvature is used as the prior knowledge to derive the optimal design. The large negative
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Fig. 3. Upper panel: height measurements for 54 girls in the Berkeley growth study data set. Lower panel: curvature estimates before and after
registration, with superposed original sampling points (n = 31) and optimal design points for η = 1 and n ∈ {15, 30}.

curvature at age one reflects a sharp deceleration in growth at a very early age. There is a dip around age six followed by a
positive acceleration peak around age ten. The maximum pubertal growth rate occurs at age eleven where the acceleration
drops to zero and another negative acceleration peak happens at age thirteen. This data set shows that on average girls
stop growing around age seventeen when the curvature approaches zero.

The original sampling points (n = 31) and the optimal design points for n = {15, 30} are marked in the lower panel
of Fig. 3, along with the estimated curvature functions derived from the Berkeley data. For n = 15, the optimal design
suggests that measurements be taken four times before age three and five times between ages five and eleven, followed
by five denser measurements between ages twelve and fifteen and the last measurement at age eighteen. When more
measurements are allowed (n = 30), the optimal design suggests more data be collected before age three and between
ages twelve and fifteen where the curvature values are largest, and slightly more data around ages seven and ten where
the second and the third peak of the curvature are located. Although it is not recorded how the researchers designed the
data collection protocol for the Berkeley growth study, it appears reasonable that they collected data four times between
ages one to two, then only once per year between ages two to eight. However, it seems that collecting data biannually
was not needed after age 16, because most of the girls stopped growing or grew at a very slow pace.

We also used this data set to examine the effect of the number of design points on goodness-of-fit. We fitted a
smoothing spline to the data from all of the ages in the original data set and treated this as the true curve. Then we
derived the optimal and uniform design points for n varying from seven to twenty. The corresponding heights at those
design points were obtained from the true curve. The respective growth curve was estimated from those age–height data
pairs at the optimal and uniform design points. We computed the MSE between the estimated curve and the true curve
over 101 equally spaced grids, similar to Section 4.2. Fig. 4 shows that the MSE for an optimal design is always smaller
than that for the corresponding uniform design across all n values. In this application, taking height measurements at
fifteen ages seems to be adequate to accurately capture the growth curve, since the further reduction of MSE is marginal
for n > 14. Fig. 4 also suggests that applying an optimal design can achieve efficiency since, for example, to reduce MSE
below 0.05, nine data points from the optimal design are required compared to eleven points from the uniform design.

A similar graph to Fig. 3 obtained from the Berkeley growth data for males is presented in Appendix C (Figure
S1). The registered curvature profile for males is similar to that for females but with a phase lag and an amplitude
enlargement (Fig. 6). This is due to the phenomenon that boys tend to delay their pubertal growth compared to their
female counterparts, but do grow taller eventually. As with the designs derived from the females, Figure S1 shows that
more points are placed over the regions that exhibit higher variations, however, more points are allocated after age
sixteen compared to the optimal design for girls. This motivated us to consider the optimal design in the presence of
subpopulations where their respective curvatures show different patterns discussed in the next section.
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Fig. 4. Mean square error (MSE) between the assumed true Berkeley growth curve for females, and growth curves estimated from optimal and
uniform design points obtained for n ∈ {7, . . . , 20}. A lower MSE implies a better goodness-of-fit.

5. Optimal design with subpopulations

Here we derive the optimal design with the existence of subpopulations. The term ‘subpopulation’ can refer to some
grouping of data that display different growth patterns, for example, heights of male and female children as they grow,
or changes in phenotypic observations for different cultivars over time. This is non-trivial since it is sometimes not
feasible/practical to derive the optimal design for each subpopulation and collect data separately, so instead we assume
the measurements are to be taken at the same time points for every subpopulation and derive a design that is optimal
for the entire population.

5.1. The D-optimality criterion

Following a similar derivation to that in Section 2, we represent the adaptive smoothing spline in the form of a linear
mixed model. To avoid cluttered notation we will only present the development for two subpopulations, but extending
to more than two subpopulations is straightforward. For the jth subpopulation, j ∈ {1, 2}, the model is

yji = gj(ti) + ϵji, (22)

and the respective prior curvature functions are f ′′

j (t), so that the weighted smoothing parameters are λj(t) = 1/[f ′′

j (t)]
2.

Using similar notation to Eq. (5), but adding the index j to distinguish between the two subpopulations, the adaptive
smoothing spline for subpopulation j in the form of linear mixed model is

y j = X β̂ + Zũj + ϵj,

ũj ∼ N(0, γ G̃ j), ϵj ∼ N(0, σ 2
j In),

(23)

where G̃ j = G(G∗

j )
−1G .

Similar to Verbyla et al. (1999) where they considered a qualitative treatment factor, we stack the two models for the
two subpopulations and then make the transformation as in Corollary 2. The combined model is

y =

[
X
X

]
β̂ +

[
Z 0
0 Z

][
ũ1

ũ2

]
+ ϵ

=

[
X
X

]
β̂ +

[
Z1 0
0 Z2

][
ũ1

ũ2

]
+ ϵ,

= X β̂ + Z ũ + ϵ

ũ =

[
ũ1

ũ2

]
∼ N(0, γ I2(n−2))

ϵ =

[
ϵ1

ϵ2

]
∼ N(0, σ 2I2n)

(24)

where Z j = ZG̃
1/2
j , ũj = G̃

−1/2
j ũj , X =

[
X
X

]
, Z =

[
Z1 0
0 Z2

]
.
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Table 3
Simulation 3, optimal and uniform design points T , and squared bias values of inflection points for the
two logistic curves, for η = 1 and n ∈ {6, 7, 8, 9}. A lower bias value implies a more accurate estimate
of the inflection point.
n Design T Bias inflection 1

(*E+05)
Bias inflection 2
(*E+05)

6 Spline 0 0.28 0.42 0.58 0.81 1 1.03 4.00
Uniform 0. 0.2 0.4 0.6 0.8 1 1.30 4.10

7 Spline 0 0.27 0.42 0.54 0.65 0.82 1 0.93 2.95
Uniform 0 0.17 0.33 0.50 0.67 0.83 1 1.03 4.35

8 Spline 0 0.21 0.29 0.42 0.54 0.65 0.82 1 1.01 3.23
Uniform 0 0.14 0.29 0.43 0.57 0.71 0.86 1 1.07 3.56

9 Spline 0 0.21 0.29 0.42 0.54 0.64 0.78 0.87 1 0.97 2.69
Uniform 0 0.12 0.25 0.38 0.50 0.62 0.75 0.88 1 0.94 3.21

In Eq. (24), we assume the linear trend X β̂ is the same for the two groups but the random effects differ depending
on λj(t) which is embedded in the matrix G̃ j . We also assume that the variance parameters σ 2

j are the same for the two
groups, so that γ = σ 2/η. The variance–covariance of the parameters (β̂, ũ) is

var
[
β̂ − β

ũ − u

]
= σ 2

[
X TX X TZ

ZTX ZTZ + ηI2(n−2)

]−1

= σ 2M−1. (25)

The optimal design under the D-optimality criterion is obtained by solving

min
T

−log(det(M)). (26)

5.2. Simulation 3: two logistic growth curves — compare bias of inflection points between optimal design and uniform design

We now consider two subpopulations having growth curves generated using the logistic curve (18) with different
parameters. When considering sigmoidal growth curves, a parameter of interest to biologists is the location of the
inflection point where the curvature changes its sign, and the maximum growth rate is achieved.

The simulation settings are summarized as follows.

• Curve 1: β1 = 1, β2 = −12, β3 = 5; inflection 1 = −
β3
β2

= 0.417
• Curve 2: θ1 = 1, θ2 = −9, θ3 = 6; inflection 2 = −

θ3
θ2

= 0.667

We fixed η = 1 and varied the number of design points n ∈ {6, 7, 8, 9}. In a similar fashion to Simulation 2, we
simulated data from the true curves at the design points (optimal and uniform). We fitted a logistic curve using the
‘nls’ function in R to each subpopulation and calculated the respective inflection point. We define the bias as the square
of the difference between the estimated inflection point and the true value, hence the bias in the inflection point for
subpopulation 1 is calculated as (− β̂3

β̂2
− 0.417)2, and for subpopulation 2 as (− θ̂3

θ̂2
− 0.667)2. Table 3 reports the mean

bias values obtained from 100 sets of simulated data. Fig. 5 plots the two logistic curves and the distribution of the design
points (uniform and optimal) along with the corresponding curvature functions for n = 7.

It can be noted from Fig. 5 that there is a delay in the growth in subpopulation 2 compared with subpopulation 1,
and hence the inflection point occurs at a later time in subpopulation 2. The interior design points have been positioned
near the large curvature values from both populations. From Table 3, the biases of both inflection points are smaller
when estimated from the optimal design than from the uniform design, with the exception of the inflection point in
subpopulation 1 for n = 9.

5.3. Berkeley growth data for males and females

Lastly we derived an optimal design from the Berkeley growth data incorporating both males and females subpop-
ulations. The prior curvature function for each population was estimated separately following the same procedure as
described in Section 4.3. Fig. 6 plots the curvature functions for both populations after registrations. The different patterns
in the curvature functions strongly imply a need to take the subpopulation structure into account when optimizing a
design to collect data, to ensure we accurately capture the relevant features of both female and male growth curves. The
female-only design (solid circles) distributes design points more densely between ages twelve and fifteen, whereas points
in the male-only design (solid squares) are more evenly distributed across the region. The optimal design derived for both
subpopulations (asterisks) appears to achieve a satisfactory compromise between the female-only and male-only designs.



J. Wang, A.P. Verbyla, B. Jiang et al. / Journal of Statistical Planning and Inference 206 (2020) 263–277 275

Fig. 5. Upper panel: the two logistic curves with different set of parameters. Lower panel: the corresponding curvature functions with superposed
uniform and optimal design points for η = 1 and n = 7.

Fig. 6. Estimated curvature functions obtained after registration for males and females, with superposed optimal design points for female-only,
male-only and both subpopulations for η = 1 and n = 30.

6. Conclusion

In this paper, we derived a method for obtaining D-optimal designs for temporal data. The prior knowledge is given by
the curvature which can be interpreted as the weighted smoothness in the adaptive smoothing spline. The mathematical
convenience of expressing the estimator of the curve in a linear mixed model form enables us to derive an analogue of
information matrix from a linear model. An extension is made for when there exist subpopulations whose curvatures
are known to have different patterns a priori. Three simulation studies are carried out to demonstrate the influence of
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the choice of the smoothing parameter and the number of design points, and we use independent criteria to compare
the optimal design with the commonly adopted uniform design. We also use the Berkeley growth data as a real data
example to show the practicality of performing the optimal design when the curvature information is unknown but can
be estimated from historical data.

There are a few extensions that could be made from the general framework described in this paper. Firstly, other
criteria could be considered in addition to the D-optimality criterion to achieve different goals in a design. Denote by M
the information matrix which is a function of a design T , a more general form of the design optimization criterion is:
minT Ψ (M), where Ψ is an operator that maps the information matrix to a real value. The D-optimality criterion takes
the form Ψ (M) = −log|M |, which is the most commonly used among a list of alphabetic criteria, see for example Chapter
10 in Atkinson et al. (2007). Dette et al. (2008) derived the optimal designs for D- and G-optimality criteria, where the
former aims for a more precise estimation of the coefficients in the spline model while the latter aims to provide an
accurate prediction of the curve, and it was shown through simulations that the G-optimal design was more sensitive to
the smoothing parameter.

Secondly, a more general variance–covariance structure can be considered. In model (1), we assume the observations
are independent and identically distributed with a common variance parameter σ 2. We could specify a more complicated
R matrix to take into account heterogeneity and dependence of the residuals. For example in the Berkeley growth data,
the variation in children’s height is more pronounced at young age, and there are positive correlations in heights between
neighbouring ages. However, adding more flexibility in the variance–covariance matrix comes at a cost of the necessity
to provide prior values for more parameters, increasing the difficulty in the design problem.

Thirdly, experimental designs can be developed in a sequential manner. Suppose there is initially little knowledge
about the data, a good starting point is to conduct a study with a uniform design to collect some data, and then use these
data to fit a curve. The estimated curvature from this study can then be used as the prior knowledge to perform optimal
design for a subsequent run of the experiment. The procedure of designing an experiment, collecting data and fitting a
curve can be repeated until a satisfactory result is reached. Another more challenging task is to produce the sequential
design in a single experimental run, in other words, to estimate future sampling points (tm+1, . . . , tn) after collecting data
at (t1, . . . , tm). This is different from the more general sequential construction of an optimal design (Tsay, 1976) where
the design points could be anywhere within the design region, but for temporal data the subsequent design points must
be chosen from a constraint region after time tm.
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