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Abstract

Background: Histological tissue analysis often involves manual cell counting 
and staining estimation of cancerous cells. These assessments are extremely time 
consuming, highly subjective and prone to error, since immunohistochemically 
stained cancer tissues usually show high variability in cell sizes, morphological 
structures and staining quality. To facilitate reproducible analysis in clinical practice 
as well as for cancer research, objective computer assisted staining estimation is 
highly desirable. Methods: We employ machine learning algorithms as randomized 
decision trees and support vector machines for nucleus detection and classification. 
Superpixels as segmentation over the tissue image are classified into foreground 
and background and thereafter into malignant and benign, learning from the user’s 
feedback. As a fast alternative without nucleus classification, the existing color 
deconvolution method is incorporated. Results: Our program TMARKER connects 
already available workflows for computational pathology and immunohistochemical 
tissue rating with modern active learning algorithms from machine learning and 
computer vision. On a test dataset of human renal clear cell carcinoma and prostate 
carcinoma, the performance of the used algorithms is equivalent to two independent 
pathologists for nucleus detection and classification. Conclusion: We present a 
novel, free and operating system independent software package for computational 
cell counting and staining estimation, supporting IHC stained tissue analysis in clinic 
and for research. Proprietary toolboxes for similar tasks are expensive, bound to 
specific commercial hardware (e.g. a microscope) and mostly not quantitatively 
validated in terms of performance and reproducibility. We are confident that the 
presented software package will proof valuable for the scientific community and we 
anticipate a broader application domain due to the possibility to interactively learn 
models for new image types.
Key words: Color deconvolution, pathology, nuclei detection, superpixel classification, 
segmentation staining estimation
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INTRODUCTION

Accurate immunohistochemical  (IHC) staining 
estimation of human tissue plays a crucial role in 
various kinds of clinical applications and medical 
research. One example is the estimation of MIB‑1 
expression for assessing the proliferation factor of renal 
clear cell carcinoma or prostate cancer from a biopsy, 
where pathologists examine morphological and IHC 
characteristics of a given tissue. These characteristics 
can be observed by staining thin‑tissue slices attached 
on a glass plate with a protein specific antibody that is 
linked to a dye. Thus, cell nuclei in the tissue layer that 
express this protein will exhibit, for example, a dark 
brown color. Other cells nuclei lose the antibody in the 
subsequent washing procedure. The whole tissue slice is 
further unspecifically colored with hematoxylin to reveal 
morphological structures and cell nuclei.

In medical research, IHC estimation is often applied on 
tissue microarrays  (TMA). Their enormous advantage 
is the ability to simultaneously stain many samples on 
one microarray, such that the experimental settings 
do not change among the samples. The scientific goal 
is to discriminate groups of samples on the TMA with 
differing protein expression patterns, which later serve as 
specific biomarker signatures for the respective patients’ 
groups.

Pathologists generally perform IHC estimation by eye with 
light microscopy or high resolution scans  [Figure  1]. For 
a typical image, two relevant questions for these types 
of problems include,  (i) are there malignant or benign 
cells present in the image and, if yes, then where?, 
and  (ii) how many nuclei of the cancer cells express the 
considered protein?

These questions can be transferred to the field of 
medical image processing and computer vision, which 
is an emerging field for various kinds of cancer.[1] Note, 
that there is a difference between malignant or benign 

cells and stained or unstained cells. The staining of the 
nuclei only reveals presence of protein. The distinction 
of malignant and healthy cells is considerably more 
difficult and relies on parameters like size, shape, and 
morphology of the cell nuclei but not necessarily on the 
IHC staining.[2] Stained benign cells (e.g., epithelial cells) 
should not be considered for staining estimation.

Motivation
High‑throughput IHC staining estimation of tissue 
images poses several challenges in practice. By nature, 
IHC stained images are much more difficult to analyze 
than, for example, immunofluorescence  (IF) images, 
where cell nuclei can be easily separated from the 
comparatively homogeneous background. Furthermore, 
IF images show almost no morphological structures in the 
background such as disrupted cells, cell compartments, 
and extracellular matrix, which might disturb the 
perception of a nucleus. Manual grading of IHC images 
is highly subjective, and reproducible cell counts is rare, 
even by trained human experts.[3] Furthermore, manual 
assessment of TMAs is very time consuming, prone to 
errors, and expensive. To this end, several approaches 

Figure 1: Two parts of typical IHC stained tissue images on which cell nuclei are to be counted and staining percentage is to be estimated. 
Blue spots are unstained nuclei, brown spots are stained nuclei. For pathology, only cancer cells are relevant for counting

Figure 2: Screenshot of TMARKER with a TMA image of MIB-1 
(ki-67) stained renal clear cell carcinoma. Detected cancerous and 
benign nuclei are marked with red and green points, respectively
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have been presented to assist or automate the whole 
estimation process,[2,4] with promising results in nuclei 
detection and classification. However, while there exist a 
number of general purpose medical imaging toolkits and 
commercial solutions, to the best of our knowledge, no 
software package especially tailored to nuclei counting 
and nuclear IHC staining estimation of human tissue 
is available publicly and free of charge for the research 
community.

Own Contribution
To provide medical researchers and clinical pathologists with 
a software package that can alleviate the aforementioned 
tasks, we have presented TMARKER, a user‑friendly, freely 
available and platform‑independent toolkit to assist in cell 
nuclei counting and staining estimation of IHC‑stained 
tissue slices and TMAs [Figure 2]. The software aims to fit 
the following needs:
•	 Semiautomatic, reproducible, and fast cell nuclei 

detection and counting in a given set of IHC stained 
images

•	 Automatic classification of cells into malignant and 
benign  (on the basis of the frameworks presented in 
previous studies[2,4])

•	 Platform independence, free availability, user‑friendly 
Java‑webstart GUI.

The program was implemented in Java v1.6 and can be 
executed on any client with a Java virtual machine. It is 
publicly available at http://www.comp‑path.inf.ethz.ch.

In Section 2, we have reported algorithmic details as 
well as implementation details. In Section 3, we have 
described the results from several real data experiments, 
which demonstrated a performance comparable to that 
by trained pathologists. Finally, we have discussed the 
utility of the software and the achieved results and have 
given prospects to further developments in Section 3.

MATERIALS AND METHODS

Superpixels and Active Learning‑based Nucleus 
Detection and Classification
Superpixels
In the scope of human tissue images, superpixels can be 
used to segment cell nuclei as well as other structural 
compartments. For this purpose, the size of superpixels 
should roughly cover a typical size of a nucleus. TMARKER 
finds the correct size and number of superpixels by 
n =  (w  ×  h)/(4  ×  r2), where w and h are image width 
and height and r is the nucleus radius. For superpixel 
formation, we use an adapted Java implementation of 
the simple linear iterative clustering  (SLIC) superpixel 
algorithm as introduced earlier.[5]

Nucleus Detection
The whole tissue image is first partitioned into superpixels. 

The superpixels are then considered as the samples for 
training a classifier. From each superpixel, a feature vector 
based on the underlying image properties is calculated. 
We implemented three feature extractors, which proved 
valuable for histology in the past: Color histograms 
(3  ×  16 bins), local binary patterns  (LBP)[6] (size 256), 
and pyramid histograms of oriented gradients  (PHOG)[7] 
(size 338). These features were concatenated resulting 
in a feature vector of size 642. The default classifier in 
TMARKER is a random forest[8]  (WEKA package[9]), 
although support for support vector machines  (SVM)[10] 
and Bayesian Networks[11] are implemented. Based on the 
labels provided by the pathologist, the classifier learns 
to discriminate between  superpixels, which represent a 
nucleus  (foreground) and superpixels belonging to the 
background. The foreground superpixels are subjected to 
nucleus classification.

Nucleus Classification
After the detection of the cell nuclei, the goal is to 
classify them into malignant and benign. To this end, we 
used the same feature vector as before, but the classifier 
was now trained only on cell nuclei labeled by the domain 
expert. The superpixels corresponding to detected nuclei 
from the step before were hence classified into malignant 
and benign. These classifications were visualized on the 
histological image so that the pathologist could correct 
and retrain the classifier [Figure 3].

Active Learning
Active learning describes a learning method in which the 
learner is able to choose the (most informative) training 
samples.[12] TMARKER provides a simple active learning 
algorithm, which we called “semiautomatic labeling.” 
The user starts labeling the image with positive 
(i.e.,  cancerous) and negative  (i.e.,  benign) nuclei. 
Alternatively, the background of the image can also be 
labeled in addition. With each label provided by the 
user, TMARKER retrains the classifier and updates 
the visualization of the classification results for all 
superpixels. By iterating this process, the user improves 
the classification results by continually labeling the 
image. For active learning, the user labels superpixels with 
low classification confidence (high uncertainty) and thus 
improving the discriminative classifier at the decision 
boundaries. The algorithm can be trained over several 
images to cover the larger variance among different 
specimens. Once trained, the classifier can be saved and 
applied to any new images in a high‑throughput manner.

Validation
Within the framework, it is important to distinguish 
between gold‑standard nuclei  (GS), which were labeled 
and classified by the user, and estimated nuclei  (ES) 
identified by the system. To evaluate the performance 
of the presented algorithms, we calculated the match 
statistics between GS and ES. Two points with the 
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the preparation of tissue, TMARKER provides visual 
assistance to select the parameter values. Interactively, 
the user gets immediate feedback on changes to the 
parameters.

RESULTS AND DISCUSSION

Superpixels and Active Learning
We have presented a new software toolkit 
called TMARKER that is suitable for nucleus 
classification  (malignant/benign and stained/unstained). 
TMARKER uses a superpixel‑based approach for 
classification. We have shown in Figure  5  (left) that 
superpixels are suitable for image segmentation and 
classification of histopathological images. The quantitative 
detection accuracy of 92% and classification accuracy of 
64% touches the range of the inter‑pathologists error (97% 
and 74% on the same dataset, respectively) even at 
such a difficult problem. This holds true for sensitivity 
and specificity as well  [Figure  5]. Thus, detection and 
classification of cell nuclei were comparable to those by 
pathologists. Moreover, we have shown in Figure 5 (right) 
that an active learning approach profits from user input, 
especially in borderline cases. The classification accuracy 

Figure 3: Superpixel algorithm. Left: Part of the original image. Middle: The image is segmented into superpixels. Right: Superpixels are 
classified into red and green superpixels (positive and negative) as training set serve the labels of the user (red and green circles). The 
color intensity reflects the classification probability

distance d were matched to each other, if d  ≤  2r, where 
r is the nucleus radius. Based on this distance, precision, 
recall, and F−Score were measured. Subsequently, the 
detected nuclei were classified into malignant and benign 
and sensitivity, specificity, and overall classification 
accuracy were calculated.

Color Deconvolution‑Based Nucleus Detection
In cases where staining estimation is performed without 
nucleus classification  (i.e.,  the cells are homogeneous 
on the image), color deconvolution provides a 
fast alternative to the superpixel approach. Color 
deconvolution enables nuclei detection based on the 
method presented earlier.[13] The image is deconvolved 
into separate color channels  (e.g.,  hematoxylin channel 
and DAB channel), which are smoothed with a Gaussian 
blur filter and subsequently screened for local intensity 
maxima  [Figure  4]. These steps are performed with 
ImageJ for Java.[14]

Few parameters are needed for local maxima detection: 
The radius r of cell nuclei describing the size of the local 
environment and an intensity threshold t per channel, 
above which a local maximum is accepted. Since these 
parameters vary between experimental protocols for 

Figure 4: Color deconvolution of the image in Figure 3. Left: The hematoxylin channel image. Middle: The DAB channel image. Right: Found 
nuclei based on the intensities on the two channels and the nucleus radius r
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saturates already after 160 labels with systematic user 
input, instead of 360 user interactions with random 
labeling.

Color Deconvolution
The nucleus detection and staining estimation with color 
deconvolution provides facilitated parameter settings, but 
no classical machine learning influence. If the pathology 
goal is not dependent on nucleus type, or the nucleus 
types are known for the given image set, this method is a 
fast alternative to the more comprehensive classification. 
As shown in Figure 6, TMARKER achieves a reproducible 

precision and recall in nucleus detection. The performance 
hereby is still comparable to those of two pathologists, as 
measured by their inter‑precision and inter‑recall.

TMARKER is free software with high potential in 
cell counting and staining estimation of pathological 
IHC‑stained tissue images. A  major advantage of 
TMARKER is the high reproducibility of competitive 
cell counts. A fast way for staining estimation is provided 
by the integrated color deconvolution method. When 
only relevant cells are considered for staining estimation, 
e.g.,  with distinction between malignant and benign 
cells, TMARKER provides modern machine learning 
methods for nucleus detection and classification. While 
the potential of TMARKER has been shown, it has to be 
further validated and improved on larger and different 
datasets.
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