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Abstract

This paper addresses the problem of choosing a kernel suitable for estimation with a
Support Vector Machine, hence further automating machine learning. This goal is achieved
by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a
formulation leads to a statistical estimation problem similar to the problem of minimizing
a regularized risk functional.

We state the equivalent representer theorem for the choice of kernels and present
a semidefinite programming formulation of the resulting optimization problem. Several
recipes for constructing hyperkernels are provided, as well as the details of common ma-
chine learning problems. Experimental results for classification, regression and novelty
detection on UCI data show the feasibility of our approach.
Keywords: learning the kernel, capacity control, kernel methods, Support Vector Ma-
chines, representer theorem, semidefinite programming

1. Introduction

Kernel Methods have been highly successful in solving various problems in machine learning.
The algorithms work by implicitly mapping the inputs into a feature space, and finding a
suitable hypothesis in this new space. In the case of the Support Vector Machine (SVM),
this solution is the hyperplane which maximizes the margin in the feature space. The
feature mapping in question is defined by a kernel function, which allows us to compute
dot products in feature space using only objects in the input space. For an introduction
to SVMs and kernel methods, the reader is referred to numerous tutorials such as Burges
(1998) and books such as Schölkopf and Smola (2002).

Choosing a suitable kernel function, and therefore a feature mapping, is imperative
to the success of this inference process. This paper provides an inference framework for
learning the kernel from training data using an approach akin to the regularized quality
functional.

∗. This work was done when the author was at the Australian National University
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1.1 Motivation

As motivation for the need for methods to learn the kernel, consider Figure 1, which shows
the separating hyperplane, the margin and the training data for a synthetic dataset. Fig-
ure 1(a) shows the classification function for a support vector machine using a Gaussian
radial basis function (RBF) kernel. The data has been generated using two Gaussian distri-
butions with standard deviation 1 in one dimension and 1000 in the other. This difference
in scale creates problems for the Gaussian RBF kernel, since it is unable to find a kernel
width suitable for both directions. Hence, the classification function is dominated by the
dimension with large variance. Increasing the value of the regularization parameter, C,
and hence decreasing the smoothness of the function results in a hyperplane which is more
complex, and equally unsatisfactory (Figure 1(b)). The traditional way to handle such data
is to normalize each dimension independently.

Instead of normalising the input data, we make the kernel adaptive to allow independent
scales for each dimension. This allows the kernel to handle unnormalised data. However, the
resulting kernel would be difficult to hand-tune as there may be numerous free variables.
In this case, we have a free parameter for each dimension of the input. We ‘learn’ this
kernel by defining a quantity analogous to the risk functional, called the quality functional,
which measures the ‘badness’ of the kernel function. The classification function for the
above mentioned data is shown in Figure 1(c). Observe that it captures the scale of each
dimension independently. In general, the solution does not consist of only a single kernel
but a linear combination of them.

(a) Standard Gaussian RBF kernel
(C=10)

(b) Standard Gaussian RBF kernel
(C=108)

(c) RBF-Hyperkernel with adap-
tive widths

Figure 1: For data with highly non-isotropic variance, choosing one scale for all dimensions
leads to unsatisfactory results. Plot of synthetic data, showing the separating
hyperplane and the margins given for a uniformly chosen length scale (left and
middle) and an automatic width selection (right).

1.2 Related Work

We analyze some recent approaches to learning the kernel by looking at the objective func-
tion that is being optimized and the class of kernels being considered. We will see later
(Section 2) that this objective function is related to our definition of a quality functional.
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Cross validation has been used to select the parameters of the kernels and SVMs (Duan
et al., 2003, Meyer et al., 2003), with varying degrees of success. The objective function is
the cross validation risk, and the class of kernels is a finite subset of the possible parameter
settings. Duan et al. (2003) and Chapelle et al. (2002) test various simple approximations
which bound the leave one out error, or some measure of the capacity of the SVM. The
notion of Kernel Target Alignment (Cristianini et al., 2002) uses the objective function
tr(Kyy>) where y are the training labels, and K is from the class of kernels spanned by the
eigenvectors of the kernel matrix of the combined training and test data. The semidefinite
programming (SDP) approach (Lanckriet et al., 2004) uses a more general class of kernels,
namely a linear combination of positive semidefinite matrices. They minimize the margin
of the resulting SVM using a SDP for kernel matrices with constant trace. Similar to this,
Bousquet and Herrmann (2002) further restricts the class of kernels to the convex hull of
the kernel matrices normalized by their trace. This restriction, along with minimization
of the complexity class of the kernel, allows them to perform gradient descent to find the
optimum kernel. Using the idea of boosting, Crammer et al. (2002) optimize

∑
t βtKt,

where βt are the weights used in the boosting algorithm. The class of base kernels {Kt} is
obtained from the normalized solution of the generalized eigenvector problem. In principle,
one can learn the kernel using Bayesian methods by defining a suitable prior, and learning
the hyperparameters by optimizing the marginal likelihood (Williams and Barber, 1998,
Williams and Rasmussen, 1996). As an example of this, when other information is avail-
able, an auxiliary matrix can be used with the EM algorithm for learning the kernel (Tsuda
et al., 2003). Table 1 summarizes these approaches. The notation K � 0 means that K is
positive semidefinite, that is for all a ∈ Rn, a>Ka > 0.

Approach Objective Kernel class (K)
Cross Validation CV Risk Finite set of kernels
Alignment y>Ky {

∑m
i=1 βiviv

>
i such that vi are eigenvectors of K}

SDP margin {
∑m

i=1 βiKi such that Ki � 0, trKi = c}
Complexity Bound margin {

∑m
i=1 βiKi such that Ki � 0, trKi = c, βi > 0}

Boosting Exp/LogLoss Base kernels from generalized eigenvector problem
Bayesian neg. log-post. dependent on prior
EM Algorithm KL Divergence linear combination of auxiliary matrix

Table 1: Summary of recent approaches to kernel learning.

1.3 Outline of the Paper

The contribution of this paper is a theoretical framework for learning the kernel. Using this
framework, we analyze the regularized risk functional. Motivated by the ideas of Cristianini
et al. (2003), we show (Section 2) that for most kernel-based learning methods there exists a
functional, the quality functional, which plays a similar role to the empirical risk functional.
We introduce a kernel on the space of kernels itself, a hyperkernel (Section 3), and its regu-
larization on the associated Hyper Reproducing Kernel Hilbert Space (Hyper-RKHS). This
leads to a systematic way of parameterizing kernel classes while managing overfitting (Ong
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et al., 2002). We give several examples of hyperkernels and recipes to construct others
(Section 4). Using this general framework, we consider the specific example of using the
regularized risk functional in the rest of the paper. The positive definiteness of the kernel
function is ensured using the positive definiteness of the kernel matrix (Section 5), and the
resulting optimization problem is a semidefinite program. The semidefinite programming
approach follows that of Lanckriet et al. (2004), with a different constraint due to a differ-
ence in regularization (Ong and Smola, 2003). Details of the specific optimization problems
associated with the C-SVM, ν-SVM, Lagrangian SVM, ν-SVR and one class SVM are de-
fined in Section 6. Experimental results for classification, regression and novelty detection
(Section 7) are shown. Finally some issues and open problems are discussed (Section 8).

2. Kernel Quality Functionals

We denote by X the space of input data and Y the space of labels (if we have a supervised
learning problem). Denote by Xtrain := {x1, . . . , xm} the training data and with Ytrain :=
{y1, . . . , ym} a set of corresponding labels, jointly drawn independently and identically from
some probability distribution Pr(x, y) on X×Y. We shall, by convenient abuse of notation,
generally denote Ytrain by the vector y, when writing equations in matrix notation. We
denote by K the kernel matrix given by Kij := k(xi, xj) where xi, xj ∈ Xtrain and k is a
positive semidefinite kernel function. We also use trK to mean the trace of the matrix and
|K| to mean the determinant.

We begin by introducing a new class of functionals Q on data which we will call quality
functionals. Note that by quality we actually mean badness or lack of quality, as we would
like to minimize this quantity. Their purpose is to indicate, given a kernel k and the training
data, how suitable the kernel is for explaining the training data, or in other words, the
quality of the kernel for the estimation problem at hand. Such quality functionals may be
the Kernel Target Alignment, the negative log posterior, the minimum of the regularized risk
functional, or any luckiness function for kernel methods. We will discuss those functionals
after a formal definition of the quality functional itself.

2.1 Empirical and Expected Quality

Definition 1 (Empirical Quality Functional) Given a kernel k, and data X, Y , we de-
fine Qemp(k, X, Y ) to be an empirical quality functional if it depends on k only via k(xi, xj)
where xi, xj ∈ X for 1 6 i, j 6 m.

By this definition, Qemp is a function which tells us how well matched k is to a specific
dataset X, Y . Typically such a quantity is used to adapt k in such a manner that Qemp is
optimal (for example, optimal Kernel Target Alignment, greatest luckiness, smallest nega-
tive log-posterior), based on this one single dataset X, Y . Provided a sufficiently rich class
of kernels K it is in general possible to find a kernel k∗ ∈ K that attains the minimum
of any such Qemp regardless of the data. However, it is very unlikely that Qemp(k∗, X, Y )
would be similarly small for other X, Y , for such a k∗. To measure the overall quality of k
we therefore introduce the following definition:
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Definition 2 (Expected Quality Functional) Denote by Qemp(k, X, Y ) an empirical
quality functional, then

Q(k) := EX,Y [Qemp(k, X, Y )]

is defined to be the expected quality functional. Here the expectation is taken over X, Y ,
where all xi, yi are drawn from Pr(x, y).

Observe the similarity between the empirical quality functional, Qemp(k, X, Y ), and the
empirical risk of an estimator, Remp(f,X, Y ) = 1

m

∑m
i=1 l(xi, yi, f(xi)) (where l is a suitable

loss function); in both cases we compute the value of a functional which depends on some
sample X, Y drawn from Pr(x, y) and a function and in both cases we have

Q(k) = EX,Y [Qemp(k, X, Y )] and R(f) = EX,Y [Remp(f,X, Y )] .

Here R(f) denotes the expected risk. However, while in the case of the empirical risk we can
interpret Remp as the empirical estimate of the expected loss R(f) = Ex,y[l(x, y, f(x))], due
to the general form of Qemp, no such analogy is available for quality functionals. Finding a
general-purpose bound of the expected error in terms of Q(k) is difficult, since the definition
of Q depends heavily on the algorithm under consideration. Nonetheless, it provides a
general framework within which such bounds can be derived.

To obtain a generalization error bound, it is sufficient that Qemp is concentrated around
its expected value. Furthermore, one would require the deviation of the empirical risk to be
upper bounded by Qemp and possibly other terms. In other words, we assume a) we have
given a concentration inequality on quality functionals, such as

Pr {|Qemp(k, X, Y )−Q(k)| > εQ} < δQ,

and b) we have a bound on the deviation of the empirical risk in terms of the quality
functional

Pr {|Remp(f,X, Y )−R(f)| > εR} < δ(Qemp).

Then we can chain both inequalities together to obtain the following bound

Pr {|Remp(f,X, Y )−R(f)| > εR} < δQ + δ(Q + εQ).

This means that the bound now becomes independent of the particular value of the quality
functional obtained on the data, rather than the expected value of the quality functional.
Bounds of this type have been derived for Kernel Target Alignment (Cristianini et al.,
2003, Theorem 9) and the Algorithmic Luckiness framework (Herbrich and Williamson,
2002, Theorem 17).

2.2 Examples of Qemp

Before we continue with the derivations of a regularized quality functional and introduce a
corresponding Reproducing Kernel Hilbert Space, we give some examples of quality func-
tionals and present their exact minimizers, whenever possible. This demonstrates that given
a rich enough feature space, we can arbitrarily minimize the empirical quality functional
Qemp. The difference here from traditional kernel methods is the fact that we allow the
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kernel to change. This extra degree of freedom allows us to overfit the training data. In
many of the examples below, we show that given a feature mapping which can model the
labels of the training data precisely, overfitting occurs. That is, if we use the training labels
as the kernel matrix, we arbitrarily minimize the quality functional. The reader who is
convinced that one can arbitrarily minimize Qemp, by optimizing over a suitably large class
of kernels, may skip the following examples.

Example 1 (Regularized Risk Functional) These are commonly used in SVMs and
related kernel methods (see Wahba (1990), Vapnik (1995), Schölkopf and Smola (2002)).
They take on the general form

Rreg(f,Xtrain, Ytrain) :=
1
m

m∑
i=1

l(xi, yi, f(xi)) +
λ

2
‖f‖2

H (1)

where ‖f‖2
H is the RKHS norm of f and l is a loss function such that for f(xi) = yi,

l(xi, yi, yi) = 0. By virtue of the representer theorem (see Section 3) we know that the
minimizer of (1) can be written as a kernel expansion. This leads to the following definition
of a quality functional, for a particular loss functional l:

Qregrisk
emp (k, Xtrain, Ytrain) := min

α∈Rm

[
1
m

m∑
i=1

l(xi, yi, [Kα]i) +
λ

2
α>Kα

]
. (2)

The minimizer of (2) is somewhat difficult to find, since we have to carry out a double
minimization over K and α. However, we know that Qregrisk

emp is bounded from below by 0.
Hence, it is sufficient if we can find a (possibly) suboptimal pair (α, k) for which Qregrisk

emp ≤ ε
for any ε > 0:

• Note that for K = βyy> and α = 1
β‖y‖2 y we have Kα = y and α>Kα = β−1. This

leads to l(xi, yi, f(xi)) = 0 and therefore Qregrisk
emp (k, Xtrain, Ytrain) = λ

2β . For sufficiently

large β we can make Qregrisk
emp (k, Xtrain, Ytrain) arbitrarily close to 0.

• Even if we disallow setting K arbitrarily close to zero by setting trK = 1, finding the
minimum of (2) can be achieved as follows: let K = 1

‖z‖2 zz>, where z ∈ Rm, and
α = z. Then Kα = z and we obtain

1
m

m∑
i=1

l(xi, yi, [Kα]i) +
λ

2
α>Kα =

m∑
i=1

l(xi, yi, zi) +
λ

2
‖z‖2

2. (3)

Choosing each zi = argminζ l(xi, yi, ζ(xi)) + λ
2 ζ2, where ζ are the possible hypothe-

sis functions obtained from the training data, yields the minimum with respect to z.
Since (3) tends to zero and the regularized risk is lower bounded by zero, we can still
arbitrarily minimize Qregrisk

emp . This is not surprising since the set of allowable K is
huge.

Example 2 (Cross Validation) Cross validation is a widely used method for estimat-
ing the generalization error of a particular learning algorithm. Specifically, the leave-one-
out cross validation is an almost unbiased estimate of the generalization error (Luntz and
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Brailovsky, 1969). The quality functional for classification using kernel methods is given
by:

Qloo
emp(k, Xtrain, Ytrain) := min

α∈Rm

[
1
m

m∑
i=1

−yi sign([Kαi]i)

]
,

which is optimized in Duan et al. (2003), Meyer et al. (2003).
Choosing K = yy> and αi = 1

‖yi‖2 yi, where αi and yi are the vectors α and y with the ith
element set to zero, we have Kαi = yi. Hence we can match the training data perfectly. For
a validation set of larger size, i.e. k-fold cross validation, the same result can be achieved
by defining a corresponding α.

Example 3 (Kernel Target Alignment) This quality functional was introduced by Cris-
tianini et al. (2002) to assess the alignment of a kernel with training labels. It is defined
by

Qalignment
emp (k, Xtrain, Ytrain) := 1− tr(Kyy>)

‖y‖2
2‖K‖F

. (4)

Here ‖y‖2 denotes the `2 norm of the vector of observations and ‖K‖F is the Frobenius
norm, i.e., ‖K‖2

F := tr(KK>) =
∑

i,j(Kij)2. This quality functional was optimized in
Lanckriet et al. (2004). By decomposing K into its eigensystem one can see that (4) is
minimized, if K = yy>, in which case

Qalignment
emp (k∗, Xtrain, Ytrain) = 1− tr(y>yy>y)

‖y‖2
2‖yy>‖F

= 1− ‖y‖4
2

‖y‖2
2‖y‖2

2

= 0.

We cannot expect that Qalignment
emp (k∗, X, Y ) = 0 for data other than that chosen to determine

k∗, in other words, a restriction of the class of kernels is required. This was also observed
in Cristianini et al. (2003).

The above examples illustrate how existing methods for assessing the quality of a kernel
fit within the quality functional framework. We also saw that given a rich enough class of
kernels K, optimization of Qemp over K would result in a kernel that would be useless for
prediction purposes, in the sense that they can be made to look arbitrarily good in terms
of Qemp but with the result that the generalization performance will be poor. This is yet
another example of the danger of optimizing too much and overfitting – there is (still) no
free lunch.

3. Hyper Reproducing Kernel Hilbert Spaces

We now propose a conceptually simple method to optimize quality functionals over classes
of kernels by introducing a Reproducing Kernel Hilbert Space on the kernel k itself, so to
say, a Hyper-RKHS. We first review the definition of a RKHS (Aronszajn, 1950).

Definition 3 (Reproducing Kernel Hilbert Space) Let X be a nonempty set (the in-
dex set) and denote by H a Hilbert space of functions f : X → R. H is called a reproducing
kernel Hilbert space endowed with the dot product 〈·, ·〉 (and the norm ‖f‖ :=

√
〈f, f〉) if

there exists a function k : X× X → R with the following properties.
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1. k has the reproducing property

〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X;

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′) for all x, x′ ∈ X.

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X} where X is the completion of the set X.

In the rest of the paper, we use the notation k to represent the kernel function and H to
represent the RKHS. In essence, H is a Hilbert space of functions, which has the special
property of being generated by the kernel function k.

The advantage of optimization in an RKHS is that under certain conditions the optimal
solutions can be found as the linear combination of a finite number of basis functions,
regardless of the dimensionality of the space H the optimization is carried out in. The
theorem below formalizes this notion (see Kimeldorf and Wahba (1971), Cox and O’Sullivan
(1990)).

Theorem 4 (Representer Theorem) Denote by Ω : [0,∞) → R a strictly monotonic
increasing function, by X a set, and by l : (X×R2)m → R∪{∞} an arbitrary loss function.
Then each minimizer f ∈ H of the general regularized risk

l ((x1, y1, f(x1)) , . . . , (xm, ym, f(xm))) + Ω (‖f‖H)

admits a representation of the form

f(x) =
m∑

i=1

αik(xi, x), (5)

where αi ∈ R for all 1 6 i 6 m.

3.1 Regularized Quality Functional

To learn the kernel, we need to define a function space of kernels, a method to regularize
them and a practical optimization procedure. We will address each of these issues in the
following. We define a RKHS on kernels k : X × X → R, simply by introducing the
compounded index set, X := X× X and by treating k as a function k : X → R:

Definition 5 (Hyper Reproducing Kernel Hilbert Space) Let X be a nonempty set.
and denote by X := X × X the compounded index set. The Hilbert space H of functions
k : X → R, endowed with a dot product 〈·, ·〉 (and the norm ‖k‖ =

√
〈k, k〉) is called a

Hyper Reproducing Kernel Hilbert Space if there exists a hyperkernel k : X × X → R with
the following properties:

1. k has the reproducing property 〈k, k(x, ·)〉 = k(x) for all k ∈ H; in particular, 〈k(x, ·), k(x′, ·)〉 =
k(x, x′).

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.

3. k(x, y, s, t) = k(y, x, s, t) for all x, y, s, t ∈ X.
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This is a RKHS with the additional requirement of symmetry in its first two arguments
(in fact, we can have a recursive definition of an RKHS of an RKHS ad infinitum, with
suitable restrictions on the elements). We define the corresponding notations for elements,
kernels, and RKHS by underlining it. What distinguishes H from a normal RKHS is the
particular form of its index set (X = X2) and the additional condition on k to be symmetric
in its first two arguments, and therefore in its second two arguments as well.

This approach of defining a RKHS on the space of symmetric functions of two variables
leads us to a natural regularization method. By analogy with the definition of the regularized
risk functional (1), we proceed to define the regularized quality functional.

Definition 6 (Regularized Quality Functional) Let X, Y be the combined training and
test set of examples and labels respectively. For a positive semidefinite kernel matrix K on
X, the regularized quality functional is defined as

Qreg(k, X, Y ) := Qemp(k, X, Y ) +
λQ

2
‖k‖2

H, (6)

where λQ > 0 is a regularization constant and ‖k‖2
H denotes the RKHS norm in H.

Note that although we have possibly non positive kernels in H, we define the regularized
quality functional only on positive semidefinite kernel matrices. This is a slightly weaker
condition than requiring a positive semidefinite kernel k, since we only require positivity
on the data. Since Qemp depends on k only via the data, this is sufficient for the above
definition. Minimization of Qreg is less prone to overfitting than minimizing Qemp, since
the regularization term λQ

2 ‖k‖
2
H effectively controls the complexity of the class of kernels

under consideration. Bousquet and Herrmann (2002) provide a generalization error bound
by estimating the Rademacher complexity of the kernel classes in the transduction setting.
Regularizers other than ‖k‖2

H are possible, such as `p penalties. In this paper, we restrict
ourselves to the `2 norm (6). The advantage of (6) is that its minimizer satisfies the
representer theorem.

Lemma 7 (Representer Theorem for Hyper-RKHS) Let X be a set, Qemp an arbi-
trary empirical quality functional, and X, Y the combined training and test set, then each
minimizer k ∈ H of the regularized quality functional Qreg(k, X, Y ) admits a representation
of the form

k(x, x′) =
m∑
i,j

βijk((xi, xj), (x, x′)) for all x, x′ ∈ X, (7)

where βij ∈ R, for each 1 6 i, j 6 m.

Proof All we need to do is rewrite (6) so that it satisfies the conditions of Theorem 4. Let
xij := (xi, xj). Then Qemp(k, X, Y ) has the properties of a loss function, as it only depends
on k via its values at xij . Note too that the kernel matrix K also only depends on k via

its values at xij . Furthermore, λQ

2 ‖k‖
2
H is an RKHS regularizer, so the representer theorem

applies and (7) follows.

Lemma 7 implies that the solution of the regularized quality functional is a linear combina-
tion of hyperkernels on the input data. This shows that even though the optimization takes
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place over an entire Hilbert space of kernels, one can find the optimal solution by choosing
among a finite number.

Note that the minimizer (7) is not necessarily positive semidefinite. In practice, this is
not what we want, since we require a positive semidefinite kernel but we do not have any
guarantees for examples in the test set. Therefore we need to impose additional constraints
of the type K � 0 or k is a Mercer Kernel. While the latter is almost impossible to enforce
directly, the former could be verified directly, hence imposing a constraint only on the values
of the kernel matrix k(xi, xj) rather than on the kernel function k itself. This means that
the conditions of the Representer Theorem apply and (7) applies (with suitable constraints
on the coefficients βij).

Another option is to be somewhat more restrictive and require that all expansion coeffi-
cients βi,j > 0 and all the functions be positive semidefinite kernels. This latter requirement
can be formally stated as follows: For any fixed x ∈ X the hyperkernel k is a kernel in its
second argument; that is for any fixed x ∈ X, the function k(x, x′) := k(x, (x, x′)), with
x, x′ ∈ X, is a positive semidefinite kernel.

Proposition 8 Given a hyperkernel, k with elements such that for any fixed x ∈ X, the
function k(xp, xq) := k(x, (xp, xq)), with xp, xq ∈ X, is a positive semidefinite kernel, and
βij > 0 for all i, j = 1, . . . ,m, then the kernel

k(xp, xq) :=
m∑

i,j=1

βijk(xi, xj , xp, xq)

is positive semidefinite.

Proof The result is obtained by observing that positive combinations of positive semidef-
inite kernels are positive semidefinite.

While this may prevent us from obtaining the minimizer of the objective function, it
yields a much more amenable optimization problem in practice, in particular if the resulting
cone spans a large enough space (as happens with increasing m). In the subsequent deriva-
tions of optimization problems, we choose this restriction as it provides a more tractable
problem in practice. In Section 4, we give examples and recipes for constructing hyperker-
nels. Before that, we relate our framework defined above to Bayesian inference.

3.2 A Bayesian Perspective

A generative Bayesian approach to inference encodes all knowledge we might have about
the problem setting into a prior distribution. Hence, the choice of the prior distribution
determines the behaviour of the inference, as once we have the data, we condition on
the prior distribution we have chosen to obtain the posterior, and then marginalize to
obtain the label that we are interested in. One popular choice of prior is the normal
distribution, resulting in a Gaussian process (GP). All prior knowledge we have about the
problem is then encoded in the covariance of the GP. There exists a GP analog to the
Support Vector Machine (for example Opper and Winther (2000), Seeger (1999)), which
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is essentially obtained (ignoring normalizing terms) by exponentiating the regularized risk
functional used in SVMs.

In this section, we derive the prior and hyperprior implied by our framework of hyperk-
ernels. This is obtained by exponentiating Qreg, again ignoring normalization terms. Given
the regularized quality functional (Equation 6), with the Qemp set to the SVM with squared
loss, we obtain the following equation.

Qreg(k, X, Y ) :=
1
m

m∑
i=1

(yi − f(xi))2 +
λ

2
‖f‖2

H +
λQ

2
‖k‖2

H.

Exponentiating the negative of the above equation gives,

exp(−Qreg(k, X, Y )) =

exp

(
− 1

m

m∑
i=1

(yi − f(xi))2
)

exp
(
−λ

2
‖f‖2

H

)
exp

(
−

λQ

2
‖k‖2

H

)
.

(8)

We compare Equation (8) to Gaussian process estimation. The general scheme is known
in Bayesian estimation as hyperpriors (Bishop, 1995, Chapter 10), which determine the
distribution of the priors (here the GP with covariance k). Figure 2 describes the model of
an ordinary GP, where f is drawn from a Gaussian distribution with covariance matrix K
and y is conditionally independent given f . For hyperprior estimation, we draw the prior
K from a distribution instead of setting it.

Gaussian Process ?>=<89:;?
k chosen by user // GFED@ABCK //GFED@ABCf // ?>=<89:;y

Figure 2: Generative model for Gaussian process estimation

To determine the distribution from which we draw the prior, we compute the hyperprior
explicitly. For given data Z = {X, Y } and applying Bayes’ Rule, the posterior is given by

p(f |Z, k) =
p(Z|f, k)p(f |k)p(k)

p(k|Z)p(Z)
. (9)

We have the directed graphical model shown in Figure 3 for a Hyperkernel-GP, where
we assume that the covariance matrix of the Gaussian process K is drawn according to
a distribution before performing further steps of dependency calculation. We shall now
explicitly compute the terms in the numerator of Equation (9).

Hyperkernel GP ONMLHIJKk0, k
p(k|k0, k)

// ?>=<89:;k
p(f |k)

//GFED@ABCf
p(y|f, x)

// ?>=<89:;y

Figure 3: Generative model for Gaussian process estimation using hyperpriors on k defined
by k.
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In the following derivations, we assume that we are dealing with finite dimensional
objects, to simplify the calculations of the normalizing constants in the expressions for the
distributions. Given that we have additive Gaussian noise, that is ε ∼ N(0, 1

γε
I), then,

p(y|f, x) ∝ exp
(
−γε

2
(y − f(x))2

)
.

Therefore, for the whole dataset (assumed to be i.i.d.),

p(Y |f,X) =
m∏

i=1

p(yi|f, xi) =
(

2π

γε

)−m
2

exp

(
−γε

2

m∑
i=1

(yi − f(xi))2
)

.

We assume a Gaussian prior on the function f , with covariance function k. The positive
semidefinite function, k, defines an inner product 〈·, ·〉Hk

in the RKHS denoted by Hk.
Then,

p(f |k) =
(

2π

γf

)−F
2

exp
(
−

γf

2
〈f, f〉Hk

)
where F is the dimension of f and γf is a constant.

We assume a Wishart distribution (Lauritzen, 1996, Appendix C), with p degrees of
freedom and covariance k0, for the prior distribution of the covariance function k, that is
k ∼ Wm(p, k0). This is a hyperprior used in the Gaussian process literature.

p(k|k0) =
|k|

p−(m+1)
2 exp

(
−1

2tr(kk0)
)

Γm(p)|k|
p
2

where Γm(p) denotes the Gamma distribution, Γm(p) = 2
pm
2 π

m(m−1)
4

∏m
i=1 Γ

(
p−i+1

2

)
. For

more details of the Wishart distribution, the reader is referred to Lauritzen (1996).
Observe that tr(kk0) is an inner product between two matrices. We can define a general

inner product between two matrices, as the inner product defined in the RKHS denoted by
H.

p(k|k0, k) =
|k|

p−(m+1)
2 exp

(
−1

2〈k, k0〉H
)

Γm(p)|k|
p
2

We can interpret the above equation as measuring the similarity between the covariance
matrix that we obtain from data and the expected covariance matrix (given by the user).
This similarity is measured by a dot product defined by k. Substituting the expressions
for p(Y |X, f), p(f |k) and p(k|k0, k) into the posterior (Equation 9), we get Equation (10)
which is of the same form as the exponentiated negative quality (Equation 8).

exp

(
−γε

2

m∑
i=1

(yi − f(xi))2
)

exp
(
−

γf

2
〈f, f〉Hk

)
exp

(
−1

2
〈k, k0〉H

)
. (10)

In a nutshell, we assume that the covariance function of the GP k, is distributed accord-
ing to a Wishart distribution. In other words, we have two nested processes, a Gaussian and
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a Wishart process, to model the data generation scheme. Hence we are studying a mixture
of Gaussian processes. Note that the maximum likelihood (ML-II) estimator (MacKay,
1994, Williams and Barber, 1998, Williams and Rasmussen, 1996) in Bayesian estimation
leads to the same optimization problems as those arising from minimizing the regularized
quality functional.

4. Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, it is natural to ask whether
hyperkernels, k, exist which satisfy the conditions of Definition 5. We address this question
by giving a set of general recipes for building such kernels.

4.1 Power Series Construction

Suppose k is a kernel such that k(x, x′) ≥ 0 for all x, x′ ∈ X, and suppose g : R → R is
a function with positive Taylor expansion coefficients, that is g(ξ) =

∑∞
i=0 ciξ

i for basis
functions ξ, ci > 0 for all i = 0, . . . ,∞, and convergence radius R. Then for pointwise
positive k(x, x′) ≤

√
R,

k(x, x′) := g(k(x)k(x′)) =
∞∑
i=0

ci(k(x)k(x′))i (11)

is a hyperkernel. For k to be a hyperkernel, we need to check that first, k is a kernel, and
second, for any fixed pair of elements of the input data, x, the function k(x, (x, x′)) is a
kernel, and third that is satisfies the symmetry condition. Here, the symmetry condition
follows from the symmetry of k. To see this, observe that for any fixed x, k(x, (x, x′))
is a sum of kernel functions, hence it is a kernel itself (since kp(x, x′) is a kernel if k
is, for p ∈ N). To show that k is a kernel, note that k(x, x′) = 〈Φ(x),Φ(x′)〉, where
Φ(x) := (

√
c0,

√
c1k

1(x),
√

c2k
2(x), . . .). Note that we require pointwise positivity, so that

the coefficients of the sum in Equation (11) are always positive. The Gaussian RBF kernel
satisfies this condition, but polynomial kernels of odd degree are not always pointwise
positive. In the following example, we use the Gaussian kernel to construct a hyperkernel.

Example 4 (Harmonic Hyperkernel) Suppose k is a kernel with range [0, 1], (RBF
kernels satisfy this property), and set ci := (1 − λh)λi

h, i ∈ N, for some 0 < λh < 1. Then
we have

k(x, x′) = (1− λh)
∞∑
i=0

(
λhk(x)k(x′)

)i =
1− λh

1− λhk(x)k(x′)
. (12)

For k(x, x′) = exp(−σ2‖x− x′‖2) this construction leads to

k((x, x′), (x′′, x′′′)) =
1− λh

1− λh exp (−σ2(‖x− x′‖2 + ‖x′′ − x′′′‖2))
. (13)

As one can see, for λh → 1, k converges to δx,x′, and thus ‖k‖2
H converges to the Frobenius

norm of k on X ×X.
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g(ξ) Power series expansion Radius of Convergence
exp ξ 1 + 1

1!ξ + 1
2!ξ

2 + 1
3!ξ

3 + . . . + 1
n!ξ

n + . . . ∞
sinh ξ 1

1!ξ + 1
3!ξ

3 + 1
5!ξ

5 + . . . + 1
(2n+1)!ξ

(2n+1) + . . . ∞
cosh ξ 1 + 1

2!ξ
2 + 1

4!ξ
4 + . . . + 1

(2n)!ξ
(2n) + . . . ∞

arctanhξ ξ
1 + ξ3

3 + ξ5

5 + . . . + ξ2n+1

2n+1 + . . . 1

− ln(1− ξ) ξ
1 + ξ2

2 + ξ3

3 + . . . + ξn

n + . . . 1

Table 2: Hyperkernels by Power Series Construction.

It is straightforward to find other hyperkernels of this sort, simply by consulting tables on
power series of functions. Table 2 contains a short list of suitable expansions.

However, if we want the kernel to adapt automatically to different widths for each
dimension, we need to perform the summation that led to (12) for each dimension in its
arguments separately. Such a hyperkernel corresponds to ideas developed in automatic
relevance determination (ARD) (MacKay, 1994, Neal, 1996).

Example 5 (Hyperkernel for ARD) Let kΣ(x, x′) = exp(−dΣ(x, x′)), where dΣ(x, x′) =
(x− x′)>Σ(x− x′), and Σ is a diagonal covariance matrix. Take sums over each diagonal
entry σj = Σjj separately to obtain

k((x, x′), (x′′, x′′′)) = (1− λh)
d∑

j=1

∞∑
i=0

(
λhkΣ(x, x′)kΣ(x′′, x′′′)

)i
=

d∏
j=1

1− λh

1− λh exp
(
−σj((xj − x′j)2 + (x′′j − x′′′j )2)

) . (14)

Eq. (14) holds since k(x) factorizes into its coordinates. A similar definition also allows us
to use a distance metric d(x, x′) which is a generalized radial distance as defined by Haussler
(1999).

4.2 Hyperkernels Invariant to Translation

Another approach to constructing hyperkernels is via an extension of a result due to Smola
et al. (1998) concerning the Fourier transform of translation invariant kernels.

Theorem 9 (Translation Invariant Hyperkernel) Suppose k((x1−x′1), (x2−x′2)) is a
function which depends on its arguments only via x1−x′1 and x2−x′2. Let F1k(ω, (x2−x′2))
denote the Fourier transform with respect to (x1 − x′1).

The function k is a hyperkernel if k(τ, τ ′) is a kernel in τ, τ ′ and F1k(ω, (x′′ − x′′′)) ≥
0 for all (x′′ − x′′′) and ω.

Proof From (Smola et al., 1998) we know that for k to be a kernel in one of its arguments,
its Fourier transform has to be nonnegative. This yields the second condition. Next, we
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need to show that k is a kernel in its own right. Mercer’s condition requires that for arbitrary
f the following is positive:∫

f(x1, x
′
1)f(x2, x

′
2)k((x1 − x′1), (x2 − x′2))dx1dx′1dx2dx′2

=
∫

f(τ1 + x′1, x
′
1)f(τ2 + x′2, x

′
2)dx1,2k(τ1, τ2)dτ1dτ2

=
∫

g(τ1)g(τ2)k(τ1, τ2)dτ1dτ2,

where τ1 = x1 − x′1 and τ2 = x2 − x′2. Here g is obtained by integration over x1 and x2

respectively. The latter is exactly Mercer’s condition on k, when viewed as a function of
two variables only.

This means that we can check whether a radial basis function (for example Gaussian RBF,
exponential RBF, damped harmonic oscillator, generalized Bn spline), can be used to con-
struct a hyperkernel by checking whether its Fourier transform is positive.

4.3 Explicit Expansion

If we have a finite set of kernels that we want to choose from, we can generate a hyperkernel
which is a finite sum of possible kernel functions. This setting is similar to that of Lanckriet
et al. (2004).

Suppose ki(x, x′) is a kernel for each i = 1, . . . , n (for example the RBF kernel or the
polynomial kernel), then

k(x, x′) :=
n∑

i=1

ciki(x)ki(x′), ki(x) > 0,∀x (15)

is a hyperkernel, as can be seen by an argument similar to that of section 4.1. k is a kernel
since k(x, x′) = 〈Φ(x),Φ(x′)〉, where Φ(x) := (

√
c1k1(x),

√
c2k2(x), . . . ,

√
cnkn(x)).

Example 6 (Polynomial and RBF combination) Let k1(x, x′) = (〈x, x′〉 + b)2p for
some choice of b ∈ R+ and p ∈ N, and k2(x, x′) = exp(−σ2‖x− x′‖2). Then,

k((x1, x
′
1), (x2, x

′
2)) = c1(〈x1, x

′
1〉+ b)2p(〈x2, x

′
2〉+ b)2p

+c2 exp(−σ2‖x1 − x′1‖2) exp(−σ2‖x2 − x′2‖2)
(16)

is a hyperkernel.

5. Optimization Problems for Regularized Risk based Quality Functionals

We will now consider the optimization of the quality functionals utilizing hyperkernels. We
choose the regularized risk functional as the empirical quality functional; that is we set
Qemp(k, X, Y ) := Rreg(f,X, Y ). It is possible to utilize other quality functionals, such as
the Kernel Target Alignment (Example 12). We focus our attention on the regularized risk
functional, which is commonly used in SVMs. Furthermore, we will only consider positive
semidefinite kernels. For a particular loss function l(xi, yi, f(xi)), we obtain the regularized
quality functional.

min
k∈H

min
f∈Hk

1
m

m∑
i=1

l(xi, yi, f(xi)) +
λ

2
‖f‖2

Hk
+

λQ

2
‖k‖2

H. (17)

1057



Ong, Smola and Williamson

By the representer theorem (Theorem 4 and Corollary 7) we can write the regularizers
as quadratic terms. Using the soft margin loss, we obtain

min
β

min
α

1
m

m∑
i=1

max(0, 1− yif(xi)) +
λ

2
α>Kα +

λQ

2
β>Kβ subject to β > 0 (18)

where α ∈ Rm are the coefficients of the kernel expansion (5), and β ∈ Rm2
are the

coefficients of the hyperkernel expansion (7).
For fixed k, the problem can be formulated as a constrained minimization problem in f ,

and subsequently expressed in terms of the Lagrange multipliers α. However, this minimum
depends on k, and for efficient minimization we would like to compute the derivatives with
respect to k. The following lemma tells us how (it is an extension of a result in Chapelle
et al. (2002)):

Lemma 10 Let x ∈ Rm and denote by f(x, θ), ci : Rm → R convex functions, where f is
parameterized by θ. Let R(θ) be the minimum of the following optimization problem (and
denote by x(θ) its minimizer):

minimize
x∈Rm

f(x, θ) subject to ci(x) ≤ 0 for all 1 ≤ i ≤ n.

Then ∂j
θR(θ) = Dj

2f(x(θ), θ), where j ∈ N and D2 denotes the derivative with respect to the
second argument of f .

Proof At optimality we have a saddlepoint in the Lagrangian

∂xL(x, α) = ∂xf(x, θ) +
n∑

i=1

αi∂xci(x) = 0. (19)

Furthermore, for all θ the Kuhn-Tucker conditions have to hold, and in particular also∑n
i=1 αi∂θci(x(θ)) = 0, since for all αi > 0 the condition ci(x) = 0 and therefore also

∂θci(x(θ)) = 0 has to be satisfied. Taking higher order derivatives with respect to θ yields

0 = ∂j
θ

[
n∑

i=1

αi∂xci(x(θ))
∂x

∂θ

]
= ∂j

θ

[
−∂xf(x, θ)

∂x

∂θ

]
. (20)

Here the last equality follows from (19). Next we use

∂j+1
θ f(x, θ) = ∂j

θ

[
D2f(x, θ) + ∂xf(x, θ)

∂x

∂θ

]
= ∂j

θD2f(x, θ).

Repeated application then proves the claim.

Instead of directly minimizing Equation (18), we derive the dual formulation. Using
the approach in Lanckriet et al. (2004), the corresponding optimization problems can be
expressed as a SDP. In general, solving a SDP would be take longer than solving a quadratic
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program (a traditional SVM is a quadratic program). This reflects the added cost incurred
for optimizing over a class of kernels.

Semidefinite programming (Vandenberghe and Boyd, 1996) is the optimization of a
linear objective function subject to constraints which are linear matrix inequalities and
affine equalities.

Definition 11 (Semidefinite Program) A semidefinite program (SDP) is a problem of
the form:

min
x

c>x

subject to F0 +
q∑

i=1

xiFi � 0 and Ax = b

where x ∈ Rp are the decision variables, A ∈ Rp×q, b ∈ Rp, c ∈ Rq, and Fi ∈ Rr×r are
given.

In general, linear constraints Ax + a > 0 can be expressed as a semidefinite constraint
diag(Ax + a) � 0, and a convex quadratic constraint (Ax + b)>(Ax + b)− c>x− d 6 0 can
be written as [

I Ax + b
(Ax + b)> c>x + d

]
� 0.

When t ∈ R, we can write the quadratic constraint a>Aa 6 t as ‖A
1
2 a‖ 6 t. In practice,

linear and quadratic constraints are simpler and faster to implement in a convex solver.
We derive the corresponding SDP for Equation (17). The following proposition allows us

to derive a SDP from a class of general convex programs. It follows the approach in Lanckriet
et al. (2004), with some care taken with Schur complements of positive semidefinite matrices
(Albert, 1969), and its proof is omitted for brevity.

Proposition 12 (Quadratic Minimax) Let m,n,M ∈ N, H : Rn → Rm×m, c : Rn →
Rm, be linear maps. Let A ∈ RM×m and a ∈ RM . Also, let d : Rn → R and G(ξ) be a
function and the further constraints on ξ. Then the optimization problem

minimize
ξ∈Rn

maximize
x∈Rm

−1
2x>H(ξ)x− c(ξ)>x + d(ξ)

subject to H(ξ) � 0
Ax + a > 0
G(ξ) � 0

(21)

can be rewritten as

minimize
t,ξ,γ

1
2 t + a>γ + d(ξ)

subject to


diag(γ) 0 0 0

0 G(ξ) 0 0
0 0 H(ξ) (A>γ − c(ξ))
0 0 (A>γ − c(ξ))> t

 � 0
(22)

in the sense that the ξ which solves (22) also solves (21).
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Specifically, when we have the regularized quality functional, d(ξ) is quadratic, and hence
we obtain an optimization problem which has a mix of linear, quadratic and semidefinite
constraints.

Corollary 13 Let H, c, A and a be as in Proposition 12, and Σ � 0. Then the solution ξ∗

to the optimization problem

minimize
ξ

maximize
x

−1
2x>H(ξ)x− c(ξ)>x + 1

2ξ>Σξ

subject to H(ξ) � 0
Ax + a > 0
ξ > 0

(23)

can be found by solving the semidefinite programming problem

minimize
t,t′,ξ,γ

1
2 t + 1

2 t′ + a>γ

subject to γ > 0
ξ > 0
‖Σ

1
2 ξ‖2 6 t′[

H(ξ) (A>γ − c(ξ))
(A>γ − c(ξ))> t

]
� 0

(24)

Proof By applying proposition 12, and introducing an auxiliary variable t′ which upper
bounds the quadratic term of ξ, the claim is proved.

Comparing the objective function in (21) with (18), we observe that H(ξ) and c(ξ) are
linear in ξ. Let ξ′ = εξ. As we vary ε the constraints are still satisfied, but the objective
function scales with ε. Since ξ is the coeffient in the hyperkernel expansion, this implies
that we have a set of possible kernels which are just scalar multiples of each other. To avoid
this, we add an additional constraint on ξ which is 1>ξ = c, where c is a constant. This
breaks the scaling freedom of the kernel matrix. As a side-effect, the numerical stability of
the SDP problems improves considerably. We chose a linear constraint so that it does not
add too much overhead to the optimization problem We make one additional simplification
of the optimization problem, which is to replace the upper bound of the squared norm
(‖Σ

1
2 ξ‖2 6 t′) with and upper bound on the norm (‖Σ

1
2 ξ‖ 6 t′).

In our setting, the regularizer for controlling the complexity of the kernel is taken to
be the squared norm of the kernel in the Hyper-RKHS. By looking at the constraints
of Equation (24), this is expressed as a bound on the norm (‖Σ

1
2 ξ‖ 6 t′). Comparing

this result to the SDP obtained in Lanckriet et al. (2004, Theorem 16), we see that the
corresponding regularizer in their setting is tr(K) = c, where c is a constant. Hence the main
difference between the two SDPs is the choice of the regularizer for the kernel. However, the
motivations of the two methods are different. This paper sets out an induction framework
for learning the kernel, and for a particular choice of Qemp, namely the regularized risk
functional, we obtain an SDP which has similarities to the approach of Lanckriet et al.
(2004). On the other hand, they start out with a transduction problem and derive the
optimization problem directly. It is unclear at this point which is the better approach.
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From the general framework above (Corollary 13, we derive several examples of ma-
chine learning problems, specifically binary classification, regression, and single class (also
known as novelty detection) problems. The following examples illustrate our method for
simultaneously optimizing over the class of kernels induced by the hyperkernel, as well as
the hypothesis class of the machine learning problem. We consider machine learning prob-
lems based on kernel methods which are derived from (17). The derivation is essentially by
application of Corollary 13 with the two additional conditions above.

6. Examples of Hyperkernel Optimization Problems

In this section, we define the following notation. For p, q, r ∈ Rn, n ∈ N let r = p ◦ q be
defined as element by element multiplication, ri = pi× qi (the Hadamard product, or the .∗
operation in Matlab). The pseudo-inverse (also known as the Moore-Penrose inverse) of a
matrix K is denoted K†. Let ~K be the m2 by 1 vector formed by concatenating the columns
of an m by m matrix. We define the hyperkernel Gram matrix K by putting together m2

of these vectors, that is we set K = [ ~Kpq]mp,q=1. Other notations include: the kernel matrix
K = reshape(Kβ) (reshaping a m2 by 1 vector, Kβ, to a m by m matrix), Y = diag(y) (a
matrix with y on the diagonal and zero everywhere else), G(β) = Y KY (the dependence
on β is made explicit), I the identity matrix, 1 a vector of ones and 1m×m a matrix of ones.
Let w be the weight vector and boffset the bias term in feature space, that is the hypothesis
function in feature space is defined as g(x) = w>φ(x) + boffset where φ(·) is the feature
mapping defined by the kernel function k.

The number of training examples is assumed to be m, that is Xtrain = {x1, . . . , xm} and
Ytrain = y = {y1, . . . , ym}. Where appropriate, γ and χ are Lagrange multipliers, while η
and ξ are vectors of Lagrange multipliers from the derivation of the Wolfe dual for the SDP,
β are the hyperkernel coefficients, t1 and t2 are the auxiliary variables. When η ∈ Rm, we
define η > 0 to mean that each ηi > 0 for i = 1, . . . ,m.

We derive the corresponding SDP for the case when Qemp is a C-SVM (Example 7).
Derivations of the other examples follow the same reasoning, and are omitted.

Example 7 (Linear SVM (C-parameterization)) A commonly used support vector clas-
sifier, the C-SVM (Bennett and Mangasarian, 1992, Cortes and Vapnik, 1995) uses an `1

soft margin, l(xi, yi, f(xi)) = max(0, 1 − yif(xi)), which allows errors on the training set.
The parameter C is given by the user. Setting the quality functional Qemp(k, X, Y ) =
minf∈H

C
m

∑m
i=1 l(xi, yi, f(xi)) + 1

2‖w‖
2
H,

min
k∈H

min
f∈Hk

C

m

m∑
i=1

ζi +
1
2
‖f‖2

Hk
+

λQ

2
‖k‖2

H

subject to yif(xi) > 1− ζi

ζi > 0

(25)

Recall the dual form of the C-SVM,

max
α∈Rm

∑m
i=1 αi − 1

2

∑m
i=1 αiαjyiyjk(xi, xj)

subject to
∑m

i=1 αiyi = 0
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0 6 αi 6 C
m for all i = 1, . . . ,m.

By considering the optimization problem dependent on f in (25), we can use the derivation
of the dual problem of the standard C-SVM. Observe that we can rewrite ‖k‖2

H = β>Kβ
due to the representer theorem for hyperkernels. Substituting the dual C-SVM problem into
(25), we get the following matrix equation,

min
β

max
α

1>α− 1
2α>G(β)α + λQ

2 β>Kβ

subject to α>y = 0
0 6 α 6 C

m
β > 0

(26)

This is of the quadratic form of Corollary 13 where x = α, θ = β, H(θ) = G(β), c(θ) = −1,
Σ = CλQK, the constraints are A =

[
y −y I −I

]> and a =
[

0 0 0 C
m1

]>.
Applying Corollary 13, we obtain the corresponding SDP.

The proof of Proposition 12 uses the Lagrange method. As an illustration of how this
proof proceeds, we derive it for this special case of the C-SVM. The Lagrangian associated
with (26) is

L(α, β, γ, η, ξ) = 1>α− 1
2
α>G(β)α +

λQ

2
β>Kβ + γy>α + η>α− ξ>(α− C

m
1),

where β > 0, η > 0, ξ > 0. The minimum is achieved at

α = G(β)†(γy + 1 + η − ξ),

and the corresponding dual optimization problem is

minimize
β,γ,η,ξ

1
2
z>G(β)†z +

C

m
ξ>1 +

λQ

2
β>Kβ,

where z = γy + 1 + η − ξ. From this point, we replace the quadratic terms with auxiliary
variables t1 and t2, and apply the Schur complement lemma (Albert, 1969). The resulting
SDP after replacing ‖K

1
2 β‖2 6 t2 by ‖K

1
2 β‖ 6 t2, and introducing the scale breaking

constraint 1>β = 1 is
minimize

β,γ,η,ξ

1
2 t1 + C

mξ>1 + λQ

2 t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2,1>β = 1[

G(β) z
z> t1

]
� 0.

(27)

Note that the value of the support vector coefficients, α, which optimizes the corresponding
Lagrange function is G(β)†z, and the classification function, f = sign(K(α ◦ y) − boffset),
is given by f = sign(KG(β)†(y ◦ z)− γ).
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Example 8 (Linear SVM (ν-parameterization)) An alternative parameterization of
the `1 soft margin was introduced by Schölkopf et al. (2000), where the user defined pa-
rameter ν ∈ [0, 1] controls the fraction of margin errors and support vectors. Using ν-SVM
as Qemp, that is, for a given ν, Qemp(k, X, Y ) = minf∈H

1
m

∑m
i=1 ζi + 1

2‖w‖
2
H − νρ subject

to yif(xi) > ρ− ζi and ζi > 0 for all i = 1, . . . ,m, the corresponding SDP is given by

minimize
β,γ,η,ξ,χ

1
2 t1 − χν + ξ> 1

m + λQ

2 t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2,1>β = 1[

G(β) z
z> t1

]
� 0

(28)

where z = γy + χ1 + η − ξ.
The value of α which optimizes the corresponding Lagrange function is G(β)†z, and the

classification function, f = sign(K(α◦y)−boffset), is given by f = sign(KG(β)†(y◦z)−γ).

Example 9 (Quadratic SVM or Lagrangian SVM) Instead of using an `1 loss class,
Mangasarian and Musicant (2001) use an `2 loss class,

l(xi, yi, f(xi)) =
{

0 if yif(xi) > 1
(1− yif(xi))2 otherwise

,

and regularized the weight vector as well as the bias term. The empirical quality func-
tional derived from this is Qemp(k, X, Y ) = minf∈H

1
m

∑m
i=1 ζ2

i + 1
2(‖w‖2

H + b2
offset) subject

to yif(xi) > 1 − ζi and ζi > 0 for all i = 1, . . . ,m. The resulting dual SVM problem has
fewer constraints, as is evidenced by the smaller number of Lagrange multipliers needed in
the corresponding SDP below.

minimize
β,η

1
2 t1 + λQ

2 t2

subject to η > 0, β > 0
‖K

1
2 β‖ 6 t2,1>β = 1[
H(β) (η + 1)

(η + 1)> t1

]
� 0

(29)

where H(β) = Y (K + 1m×m + λmI)Y , and z = γ1 + η − ξ.
The value of α which optimizes the corresponding Lagrange function is H(β)†(η+1), and

the classification function, f = sign(K(α ◦ y)− boffset), is given by f = sign(KH(β)†((η +
1) ◦ y) + y>(H(β)†(η + 1))).

Example 10 (Single class SVM or Novelty Detection) For unsupervised learning, the
single class SVM computes a function which captures regions in input space where the prob-
ability density is in some sense large (Schölkopf et al., 2001). A suitable quality functional
Qemp(k, X, Y ) = minf∈H

1
νm

∑m
i=1 ζi + 1

2‖w‖
2
H − ρ subject to f(xi) > ρ− ζi, and ζi > 0 for
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all i = 1, . . . ,m, and ρ > 0. The corresponding SDP for this problem is

minimize
β,γ,η,ξ

1
2 t1 + ξ> 1

νm − γ + λQ

2ν t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2[

K z
z> t1

]
� 0

(30)

where z = γ1 + η − ξ, and ν ∈ [0, 1] is a user selected parameter controlling the proportion
of the data to be classified as novel.

The score to be used for novelty detection is given by f = Kα− boffset , which reduces to
f = η − ξ, by substituting α = K†(γ1 + η − ξ), boffset = γ1 and K = reshape(Kβ).

Example 11 (ν-Regression) We derive the SDP for ν regression (Schölkopf et al., 2000),
which automatically selects the ε insensitive tube for regression. As in the ν-SVM case in
Example 8, the user defined parameter ν controls the fraction of errors and support vectors.
Using the ε-insensitive loss, l(xi, yi, f(xi)) = max(0, |yi−f(xi)|−ε), and the ν-parameterized
quality functional, Qemp(k, X, Y ) = minf∈H C

(
νε + 1

m

∑m
i=1(ζi + ζ∗i )

)
subject to f(xi) −

yi 6 ε − ζi, yi − f(xi) 6 ε − ζ∗i , ζ
(∗)
i > 0 for all i = 1, . . . ,m and ε > 0, the corresponding

SDP is
minimize
β,γ,η,ξ,χ

1
2 t1 + χν

λ + ξ> 1
mλ + λQ

2λ t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2,1>β = stddev(Ytrain)[

F (β) z
z> t1

]
� 0

, (31)

where z =
[
−y
y

]
− γ

[
1
−1

]
+ η − ξ − χ

[
1
1

]
and F (β) =

[
K −K
−K K

]
.

The Lagrange function is minimized for α = F (β)†z, and substituting into f = Kα −
boffset , we obtain the regression function f =

[
−K K

]
F (β)†z − γ.

Example 12 (Kernel Target Alignment) For the Kernel Target Alignment approach
(Cristianini et al., 2002), Qemp = tr(Kyy>) = y>Ky, we directly minimize the regularized
quality functional, obtaining the following optimization problem (Lanckriet et al., 2002),

minimize
β

1
2 t1 + λQ

2 t2

subject to β > 0
‖K

1
2 β‖ 6 t2,1>β = 1[

K y
y> t1

]
� 0.

(32)

Note that for the case of Kernel Target Alignment, Qemp does not provide a direct formula-
tion for the hypothesis function, but instead, it determines a kernel matrix K. This kernel
matrix, K, can be utilized in a traditional SVM, to obtain a classification function.

1064



Hyperkernels

7. Experiments

In the following experiments, we use data from the UCI repository. Where the data at-
tributes are numerical, we did not perform any preprocessing of the data. Boolean attributes
are converted to {−1, 1}, and categorical attributes are arbitrarily assigned an order, and
numbered {1, 2, . . .}. The optimization problems in Section 6 were solved with an approxi-
mate hyperkernel matrix as described in Section 7.1. The SDPs were solved using SeDuMi
(Sturm, 1999), and YALMIP (Löfberg, 2002) was used to convert the equations into stan-
dard form. We used the hyperkernel for automatic relevance determination defined by (14)
for the hyperkernel optimization problems. The scaling freedom that (14) provides for each
dimension means we do not have to normalize data to some arbitrary distribution.

For the classification and regression experiments, the datasets were split into 100 random
permutations of 60% training data and 40% test data. We deliberately did not attempt
to tune parameters and instead made the following choices uniformly for all datasets in
classification, regression and novelty detection:

• The kernel width σi, for each dimension, was set to 50 times the 90% quantile of
the value of |xi − xj | over the training data. This ensures sufficient coverage without
having too wide a kernel. This value was estimated from a 20% random sampling of
the training data.

• λ was adjusted so that 1
λm = 100 (that is C = 100 in the Vapnik-style parameterization

of SVMs). This has commonly been reported to yield good results.
• ν = 0.3 for classification and regression. While this is clearly suboptimal for many

datasets, we decided to choose it beforehand to avoid having to change any parameter.
Clearly we could use previous reports on generalization performance to set ν to this
value for better performance. For novelty detection, ν = 0.1 (see Section 7.6 for
details).

• λh for the Harmonic Hyperkernel was chosen to be 0.6, giving adequate coverage over
various kernel widths in (12) (small λh emphasizes wide kernels almost exclusively, λh

close to 1 will treat all widths equally).
• The hyperkernel regularization constant was set to λQ = 1.
• For the scale breaking constraint 1>β = c, c was set to 1 for classification as the hy-

pothesis class only involves the sign of the trained function, and therefore is scale free.
However, for regression, c := stddev(Ytrain) (the standard deviation of the training
labels) so that the hyperkernel coefficients are of the same scale as the output (the
constant offset boffset takes care of the mean).

In the following experiments, the hypothesis function is computed using the variables
of the SDP. In certain cases, numerical problems in the SDP optimizer or in the pseudo-
inverse may prevent this hypothesis from optimizing the regularized risk for the particular
kernel matrix. In this case, one can use the kernel matrix K from the SDP and obtain the
hypothesis function via a standard SVM.

7.1 Low Rank Approximation

Although the optimization of (17) has reduced the problem of optimizing over two possibly
infinite dimensional Hilbert spaces to a finite problem, it is still formidable in practice as
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there are m2 coefficients for β. For an explicit expansion of type (15) one can optimize in
the expansion coefficients ki(x)ki(x′) directly, which leads to a quality functional with an
`2 penalty on the expansion coefficients. Such an approach is appropriate if there are few
terms in (15).

In the general case (or if the explicit expansion has many terms), one can use a low-rank
approximation, as described by Fine and Scheinberg (2001) and Zhang (2001). This entails
picking from

{
k((xi, xj), ·)|1 ≤ i, j ≤ m2

}
a small fraction of terms, p (where m2 � p),

which approximate k on Xtrain ×Xtrain sufficiently well. In particular, we choose an m× p
truncated lower triangular matrix G such that ‖PKP> − GG>‖F 6 δ, where P is the
permutation matrix which sorts the eigenvalues of K into decreasing order, and δ is the
level of approximation needed. The norm, ‖ · ‖F is the Frobenius norm. In the following
experiments, the hyperkernel matrix was approximated to δ = 10−6 using the incomplete
Cholesky factorization method (Bach and Jordan, 2002).

7.2 Classification Experiments

Several binary classification datasets1 from the UCI repository were used for the experi-
ments. A set of synthetic data (labeled syndata in the results) sampled from two Gaussians
was created to illustrate the scaling freedom between dimensions. The first dimension had
a standard deviation of 1000 whereas the second dimension had a standard deviation of 1
(a sample result is shown in Figure 1). The results of the experiments are shown in Table 3.

From Table 3, we observe that our method achieves state of the art results for all the
datasets, except the “heart” dataset. We also achieve results much better than previously
reported for the “credit” dataset. Comparing the results for C-SVM and Tuned SVM,
we observe that our method is always equally good, or better than a C-SVM tuned using
10-fold cross validation.

7.3 Effect of λQ and λh on Classification Error

In order to investigate the effect of varying the hyperkernel regularization constant, λQ,
and the Harmonic Hyperkernel parameter, λh, we performed experiments using the C-SVM
hyperkernel optimization (Example 7). We performed two sets of experiments with each of
our chosen datasets. The results shown in Table 4.

From Table 4, we observe that the variation in classification accuracy over the whole
range of the hyperkernel regularization constant, λQ is less than the standard deviation of
the classification accuracies of the various datasets (compare with Table 3). This demon-
strates that our method is quite insensitive to the regularization parameter over the range
of values tested for the various datasets.

The method shows a higher sensitivity to the harmonic hyperkernel parameter. Since
this parameter effectively selects the scale of the problem, by selecting the “width” of the
kernel, it is to be expected that each dataset would have a different ideal value of λh. It is
to be noted that the generalization accuracy at λh = 0.6 is within one standard deviation
(see Table 3 and 4) of the best accuracy achieved over the whole range tested.

1. We classified window vs. non-window for glass data, the other datasets are all binary.
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Data C-SVM ν-SVM Lag-SVM Best other CV Tuned SVM (C)
syndata 2.8±2.4 1.9±1.9 2.4±2.2 NA 5.9±5.4 (108)
pima 23.5±2.0 27.7±2.1 23.6±1.9 23.5 24.1±2.1 (104)

ionosph 6.6±1.8 6.7±1.8 6.4±1.9 5.8 6.1±1.8 (103)
wdbc 3.3±1.2 3.8±1.2 3.0±1.1 3.2 5.2±1.4 (106)
heart 19.7±3.3 19.3±2.4 20.1±2.8 16.0 23.2±3.7 (104)

thyroid 7.2±3.2 10.1±4.0 6.2±3.1 4.4 5.2±2.2 (105)
sonar 14.8±3.7 15.3±3.7 14.7±3.6 15.4 15.3±4.1 (103)
credit 14.6±1.8 13.7±1.5 14.7±1.8 22.8 15.3±2.0 (108)
glass 6.0±2.4 8.9±2.6 6.0±2.2 NA 7.2±2.7 (103)

Table 3: Hyperkernel classification: Test error and standard deviation in percent. The
second, third and fourth columns show the results of the hyperkernel optimizations
of C-SVM (Example 7), ν-SVM (Example 8) and Lagrangian SVM (Example 9)
respectively. The results in the fifth column shows the best results from (Freund
and Schapire, 1996, Rätsch et al., 2001, Meyer et al., 2003). The rightmost column
shows a C-SVM tuned in the traditional way. A Gaussian RBF kernel was tuned
using 10-fold cross validation on the training data, with the best value of C shown
in brackets. A grid search was performed on (C, σ). The values of C tested were
{10−2, 10−1, . . . , 109}. The values of the kernel width, σ, tested were between 10%
and 90% quantile of the distance between a pair of sample of points in the data.
These quantiles were estimated by a random sample of 20% of the training data.

λh λQ

Data Error Deviation Error Deviation
syndata 3.0±1.1 2.2 2.8±0.0 2.2
pima 25.7±2.6 1.9 24.5±0.1 1.5

ionosph 6.6±1.0 1.7 7.2±0.1 1.9
wdbc 2.9±0.4 0.9 2.7±0.2 0.8
heart 19.7±2.0 3.0 19.4±0.9 2.8

thyroid 6.5±2.8 3.0 6.7±0.3 3.7
sonar 15.7±1.6 3.4 15.1±0.2 3.3
credit 16.0±1.8 1.6 14.7±0.4 1.6
glass 5.9±1.0 2.3 5.2±0.3 2.3

Table 4: Effect of varying λh and λQ on classification error. In the left exper-
iment, we fixed λQ = 1, and λh was varied with the values λh =
{0.1, 0.2, . . . , 0.9, 0.92, 0.94, 0.96, 0.98}.In the right, we set λh = 0.6 and varied
λQ = {10−4, 10−3, . . . , 105}. The error columns (columns 2 and 4) report the aver-
age error on the test set and the standard deviation of the error over the different
parameter settings. The deviation columns (columns 3 and 5) report the average
standard deviation over 10 random 60%/40% splits.
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7.4 Computational Time

One of the concerns of an SDP optimization problem is the computational complexity. In-
stead of performing worst case analysis of computational complexity, we perform an empiri-
cal test to investigate the scaling behaviour of the proposed method. The total computation
time for the first 10 splits of the data was measured, and the average time taken for each
split was computed and plotted on a log scale plot in Figure 4. The slope of the graph
demonstrates that we have an approximately cubic scaling in computational time.

Figure 4: A log scale plot of computational time (in seconds), measured using MATLAB’s
cputime, against the number of examples in the respective datasets. The slope of
the least squares fit through the points are 3.13, 3.05 and 3.03 for C-SVM (Ex-
ample 7), ν-SVM (Example 8) and Lag-SVM (Example 9) respectively, demon-
strating that the algorithms have approximately cubic scaling.

7.5 Regression Experiments

In order to demonstrate that we can solve problems other than binary classification using
the same framework, we performed some experiments using regression and novelty detection
datasets. The results of the regression experiments are shown in Table 5. We used the same
parameter settings as in the previous section.

Comparing the second and fourth columns, we observe that the hyperkernel optimization
problem performs better than a ε-SVR tuned using cross validation for all the datasets
except the servo dataset. Meyer et al. (2003) used a 90%/10% split of the data for their
experiments, while we used a 60%/40% split, which may account for the better performance
in the cpu and servo datasets. The reason for the much better rate on the “auto imports”
dataset remains a mystery.
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Data ν-SVR Best other CV Tuned ε-SVR
auto-mpg 7.83±0.96 7.11 9.47±1.55
boston 12.96±3.38 9.60 15.78±4.30

auto imports(×106) 5.91±2.41 0.25 7.51±5.33
cpu(×103) 4.41±3.64 3.16 12.02±20.73

servo 0.74±0.26 0.25 0.62±0.25

Table 5: Hyperkernel regression: Mean Squared Error. The second column shows the re-
sults from the hyperkernel optimization of the ν-regression (Example (11)). The
results in the third column shows the best results from (Meyer et al., 2003). The
rightmost column shows a ε-SVR with a gaussian kernel tuned using 10-fold cross
validation on the training data. Similar to the classification setting, grid search
was performed on (C, σ). The values of C tested were {10−2, 10−1, . . . , 109}. The
values of the kernel width, σ, tested were between the 10% and 90% quantiles of
the distance between a pair of sample of points in the data. These quantiles were
estimated by a random 20% sample of the training data.

7.6 Novelty Detection

We applied the single class support vector machine to detect outliers in the USPS data. The
test set of the default split in the USPS database was used in the following experiments.
The parameter ν was set to 0.1 for these experiments, hence selecting up to 10% of the data
as outliers.

Figure 5: Top rows: Images of digits ‘1’ and ‘2’, considered novel by algorithm; Bottom:
typical images of digits ‘1’ and ‘2’.

Since there is no quantitative method for measuring the performance of novelty detec-
tion, we cannot directly compare our results with the traditional single class SVM. We can
only subjectively conclude, by visually inspecting a sample of the digits, that our approach
works for novelty detection of USPS digits. Figure 5 shows a sample of the digits. We can
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see that the algorithm identifies ‘novel’ digits, such as in the top two rows of Figure 5. The
bottom two rows shows a sample of digits which have been deemed to be ‘common’.

8. Summary and Outlook

The regularized quality functional allows the systematic solution of problems associated with
the choice of a kernel. Quality criteria that can be used include Kernel Target Alignment,
regularized risk and the log posterior. The regularization implicit in our approach allows
the control of overfitting that occurs if one optimizes over a too large a choice of kernels.

We have shown that when the empirical quality functional is the regularized risk func-
tional, the resulting optimization problem is convex, and in fact is a SDP. This SDP, which
learns the best kernel given the data, has a Bayesian interpretation in terms of a hierarchical
Gaussian process. We define more general kernels which may have many free parameters,
and optimize over them without overfitting. The experimental results on classification
demonstrate that it is possible to achieve state of the art performance using our approach
with no manual tuning. Furthermore, the same framework and parameter settings work for
various datasets as well as regression and novelty detection.

This approach makes support vector based estimation approaches more automated.
Parameter adjustment is less critical compared to when the kernel is fixed, or hand tuned.
Future work will focus on deriving improved statistical guarantees for estimates derived via
hyperkernels which match the good empirical performance.
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