Machine Learning using Hyperkernels

Cheng Soon Ong
Alexander J. Smola

CHENG.ONGQ@QANU.EDU.AU
ALEX.SMOLAQANU.EDU.AU

Machine Learning Group, RSISE, Australian National University, Canberra, ACT 0200, Australia

Abstract

We expand on the problem of learning a ker-
nel via a RKHS on the space of kernels it-
self. The resulting optimization problem is
shown to have a semidefinite programming
solution. We demonstrate that it is possible
to learn the kernel for various formulations
of machine learning problems. Specifically,
we provide mathematical programming for-
mulations and experimental results for the C-
SVM, v-SVM and Lagrangian SVM for clas-
sification on UCI data, and novelty detection.

1. Introduction

Kernel Methods have been highly successful in solving
various problems in machine learning. The algorithms
work by mapping the inputs into a feature space, and
finding a suitable hypothesis in this new space. In
the case of the Support Vector Machine, this solution
is the hyperplane which maximizes the margin in the
feature space. The feature mapping in question is de-
fined by a kernel function, which allows us to compute
dot products in feature space using only the objects in
the input space.

Recently, there have been many developments regard-
ing learning the kernel function itself (Bousquet & Her-
rmann, 2003; Crammer et al., 2003; Cristianini et al.,
2002; Lanckriet et al., 2002; Momma & Bennett, 2002;
Ong et al., 2003). In this paper, we extend the hy-
perkernel framework introduced in Ong et al. (2003),
which we review in Section 2. In particular, the con-
tributions of this paper are:

e a general class of hyperkernels allowing automatic
relevance determination (Section 3),

e explicit mathematical programming formulations of
the optimization problems (Section 4),

e implementation details of various SVMs and Align-
ment (Section 5)

e and further experiments on binary classification and
novelty detection (Section 6).

At the heart of the strategy is the idea that we learn
the kernel by performing the kernel trick on the space
of kernels, hence the notion of a hyperkernel.

2. Hyper-RKHS

As motivation for the need for such a formulation, con-
sider Figure 1, which shows the separating hyperplane
and the margin for the same dataset. Figure 1(a)
shows the training data and the classification function
for a support vector machine using a Gaussian RBF
kernel. The data has been sampled from two Gaussian
distributions with standard deviation 1 in one dimen-
sion and 1000 in the other. This difference in scale
creates problems for the Gaussian RBF kernel, since
it is unable to find a kernel width suitable for both
dimensions. Hence, the classification function is dom-
inated by the dimension with large variance. The tra-
ditional way to handle such data is to normalize each
dimension independently.

Instead of normalizing the input data, we make the
kernel adaptive to allow independent scales for each
dimension. This allows the kernel to handle unnor-
malized data. However, the resulting kernel would be
difficult to tune by cross validation as there are nu-
merous free variables (one for each dimension). We
‘learn’ this kernel by defining a quantity analogous to
the risk functional, called the quality functional, which
measures the ‘badness’ of the kernel function. The
classification function for the above mentioned data is
shown in Figure 1(b). Observe that it captures the
scale of each dimension independently.

We review the definitions from (Ong et al., 2003).
Given a set of input data, X, and their associated
labels! , Y, and a class of kernels X, we would like to
select the best kernel k£ € X for the problem.

Definition 1 (Empirical Quality Functional)

Given a kernel k, and data X,Y, we define
Qemp(k, X,Y) to be an empirical quality func-
tional if it depends on k only via k(x;,x;) where

z5,x; € X for1 <7, <m.

Lonly for supervised learning

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

5-
I s I 1
I * I I
I + t +
4 | * | | 4
I Ht I
+ + o+
i i i
3l ! . +o + | 3L
! - s + + * ! +
i N o4 + i
i * o I
2 i i i 2F
°
i + I * i
| o :» 1 I
[e]]) | | L
1 o + 1
o ! oo o 1 |
| - | |
o C o
poo i |
or © o © i I 0
o o I | I
© o o 1 1
s % 5 o I I 1k N
| o | | N
=) 2)
-3000 —-2000 -1000 0 1000 2000 3000 4000 5000 6000 -3000 —-2000 -1000 0 1000 2000 3000 4000 5000 6000

(a) Standard Gaussian RBF kernel

(b) RBF-Hyperkernel with adaptive widths

Figure 1. For data with highly non-isotropic variance, choosing one scale for all dimensions leads to unsatisfactory results.
Plot of synthetic data, showing the separating hyperplane and the margins given for a uniformly chosen length scale (left)

and an automatic width selection (right).

Qemp tells us how well matched %k is to a specific
dataset X,Y. Examples of such functionals include
the Kernel Target Alignment, the regularized risk and
the negative log-posterior. However, if provided with
a sufficiently rich class of kernels X it is in general
possible to find a kernel that attains the minimum of
any such Qemp regardless of the data (see (Ong et al.,
2003) for examples). Therefore, we would like to some-
how control the complexity of the kernel function. We
achieve this by using the kernel trick again on the space
of kernels.

Definition 2 (Hyper RKHS) Let X be a nonempty
set and denote by X := X x X the compounded index
set. The Hilbert space H of functions k : X — R,
endowed with a dot product (-,-) (and the norm ||k|| =
\/{k,k)) is called a Hyper Reproducing Kernel Hilbert
Space if there exists a hyperkernel k : X x X — R with
the following properties:

1. k has the reproducing property
(k,k(z,")) = k(z) for all k € I(; (1)

in particular, (k(z,-),k(2',-)) = k(z,2’).

2. k spans H, i.e. H = span{k(z,)|z € X} where X
is the completion of the set X.

3. For any fized x € X the hyperkernel k is a kernel
in its second argument, i.e. for any fived x € X,
the function k(x,2’) := k(z, (x,2")) with z,2’ € X
is a kernel.

What distinguishes H from a normal RKHS is the par-
ticular form of its index set (X = X?) and the ad-

ditional condition on k£ to be a kernel in its second
argument for any fixed first argument. This condi-
tion somewhat limits the choice of possible kernels, on
the other hand, it allows for simple optimization algo-
rithms which consider kernels & € H, which are in the
convex cone of k. Analogous to the regularized risk
functional, Ryeg(f, X,Y) = L3 U(zi,yi, fzi)) +
%Hsz, we regularize Qemp(k, X,Y).

Definition 3 (Regularized Quality Functional)

A
Qreg(k, X, Y) = Qemp (b, X, Y) + 2| Kll5c (2)

where A\g > 0 is a regularization constant and ||k||3,
denotes the RKHS norm in K. B

Minimization of Qe is less prone to overfitting than
Minimizing Qemp, since the regularizer 22 || k|2 effec-
tively controls the complexity of the class of kernels
under consideration (this can be derived from (Bous-
quet & Herrmann, 2003)). The minimizer of (2) satis-
fies the representer theorem:

Theorem 4 (Representer Theorem) Denote by X
a set, and by Q an arbitrary quality functional. Then
each minimizer k € H of the regularized quality func-
tional (2), admits a representation of the form

k(xaxl) = Z ﬂi,jk((xiaxj)? (l'vx/))' (3)

i,j=1

This shows that even though we are optimizing over
a whole Hilbert space of kernels, we still are able to

find the optimal solution by choosing among a finite
number, which is the span of the kernel on the data.

Note that the minimizer (3) is not necessarily positive
semidefinite. In practice, this is not what we want,
since we require a positive semidefinite kernel. There-
fore we need to impose additional constraints. We re-
quire that all expansion coefficients «; ; > 0. While
this may prevent us from obtaining the minimizer of
the objective function, it yields a much more amenable
optimization problem in practice. In the subsequent
derivations of optimization problems, we choose this
restriction as it provides a tractable problem.

Similar to the analogy between Gaussian Processes
(GP) and SVMs (Opper & Winther, 2000), there is
a Bayesian interpretation for Hyperkernels which is
analogous to the idea of hyperpriors. Our approach
can be interpreted as drawing the covariance matrix
of the GP from another GP.

3. Designing Hyperkernels

The criteria imposed by Definition 2 guide us directly
in the choice of functions suitable as hyperkernels. The
first observation is that we can optimize over the space
of kernel functions, hence we can take large linear com-
binations of parameterized families of kernels as the
basic ingredients. This leads to the so-called harmonic
hyperkernels (Ong et al., 2003):

Example 1 (Harmonic Hyperkernel) Denote by
k a kernel with k : X x X — [0,1], and set ¢; :=
(1 = Ap)N, for some 0 < A\, < 1. Then we have

E(zz) = (1-) X5 nk(z)k(z))'
B 1= (4)

1= Mk(2)k(2)
A special case is k(z,2') = exp(—0cl|jz —2'||?). Here we
obtain for k((z,z’), (", z""))

11—\
o(llz —a[|* + [l=" — 2"|]?))

()

1—Xexp(—

However, if we want the kernel to adapt automatically
to different widths for each dimension, we need to per-
form the summation that led to (4) for each dimension
in its arguments separately (similar to automatic rel-
evance determination (MacKay, 1994)).

Example 2 (Hyperkernel for ARD) Let

ks(z,2") = exp(—ds(z,2')), where ds(z,2’) =
(x — 2)T8(x — '), and ¥ a diagonal covariance
matriz. Take sums over each diagonal entry o; = X;;

separately to obtain

E((z,2'), (2", 2"))
(1=) iy oo ks (e, @ ks (2", 2)’
B ﬁ 1— 2\,
i i (25— 25)? + (2] — 27")?))
This is a valid hyperkernel since k(z) factorizes into
its coordinates. A similar definition also allows us to

use a distance metric d(x,z") which is a generalized
radial distance as defined by (Haussler, 1999).

Ah €Xp (

4. Semidefinite Programming

We derive Semidefinite Programming (SDP) formu-
lations of the optimization problems arising from
the minimization of the regularized risk functional.
Semidefinite programming (Vandenberghe & Boyd,
1996) is the optimization of a linear objective func-
tion subject to constraints which are linear matrix in-
equalities and affine equalities. The following proposi-
tion allows us to derive a SDP from a class of general
quadratic programs. It is an extension of the deriva-
tion in (Lanckriet et al., 2002) and its proof can be
found in Appendix A.

Proposition 5 (Quadratic Minimax) Let
m,n,M € N, H : R" - R™™ ¢ : R* — R™,
be linear maps. Let A € RM*™ gnd a € RM. Also,
let d:R™ — R and G(0) be a function and the further
constraints on 0. Then the optimization problem

mein max —2aTH(0)z — c(0) "2 + d(6)
subject to H(6) =0 (6)
Ar+a >0
GO) =0
can be rewritten as
min it+a’y+d(9)
t,0,y
subject to >0, GO) =0
HO) (AT-e0)],
(ATy —c(0))" t -

Specifically, when we have the regularized quality func-
tional, d(0) is quadratic, and hence we obtain an opti-
mization problem which has a mix of linear, quadratic
and semidefinite constraints.

Corollary 6

minmax —iz' H(0)z —c(0) "z + 360750
0 T
subject to H(0) =0 (8)
Ar+a >0
6>0

can be rewritten as

mti’rtlllg}’iyze it+ it +aly
subject to v =0
0>=0
I=26]| < t'
HE) (A0 |,
(ATy —c(0)" t -

The proof of the above is obtained immediately from
Proposition 5 and introducing an auxiliary variable ¢’
which upper bounds the quadratic term of 6.

5. Implementation Details

When Qemp is the regularized risk, we obtain:
N DU

mm - — Zl(l’i7yi, flz3)) + §Hf||:}c +

fEH keH M 4

A
Skl

(10)
Comparing the objective function in (8) with (10), we
observe that H(6) and ¢(@) are linear in 6. Let ¢’ = 6.
As we vary ¢ the constraints are still satisfied, but the
objective function scales with . Since 6 is the coef-
ficient in the hyperkernel expansion, this implies that
we have a set of possible kernels which are just scalar
multiples of each other. To avoid this, we add an ad-
ditional constraint on # which is 176 = 1. This breaks
the scaling freedom of the kernel matrix. As a side-
effect, the numerical stability of the SDP problems im-
proves considerably.

We give some examples of common SVMs which are
derived from (10). The derivation is basically by ap-
plication of Corollary 6. We derive the corresponding
SDP for the case when Qemp is a C-SVM (Example 3).

Derivations of the other examples follow the same rea-
soning, and are omitted. In this subsection, we define
the following notation. For p,q,7 € R”,n € Nlet r =
p o g be defined as element by element multiplication,
r; = p; X ¢;. The pseudo-inverse (or Moore-Penrose in-
verse) of a matrix K is denoted KT. Define the hyper-
kernel Gram matrix K by K, . = k((zi,z;), (zp, 7)),
the kernel matrix K = reshape(K(3) (reshaping a m?
by 1 vector, K3, to a m by m matrix), Y = diag(y)
(a matrix with y on the diagonal and zero everywhere
else), G(B8) = YKY (the dependence on f is made
explicit), I the identity matrix and 1 a vector of ones.

The number of training examples is assumed to be m.
Where appropriate, v and x are Lagrange multipliers,
while n and £ are vectors of Lagrange multipliers from
the derivation of the Wolfe dual for the SDP, g are

the hyperkernel coefficients, t; and t5 are the auxiliary
variables.

Example 3 (Linear SVM (C-style)) A commonly
used support vector classifier, the C-SVM (Bennett &
Mangasarian, 1992; Cortes € Vapnik, 1995) uses an
0y soft margin, Uz, y;, f(2:)) = max(0,1 — y; f(z:)),
which allows errors on the training set. The parameter
C' is given by the user. Setting the quality functional
Qemp(kva Y) = minfGH % Z:Zl l(xivyia f(xl)) +
26 w3, the resulting SDP is

I+ CeT1 4 %tg

minimize
B:vm.€
subject to 1 >0, >0,8>
|35 <t (11)
G(B) =
-
|: ZT t _0’

where z=vy+1+4+n—¢€.

The value of a which optimizes the corresponding La-
grange function is G(B3)1z, and the classification func-
tion, f = sign(K(a oy) — bogset), s given by f =
sign(KG(B)(y o z) —).

Proof [Derivation of SDP for C-SVM] We begin our
derivation from the regularized quality functional (10).
Dividing throughout by A and setting the cost function
to the ¢; soft margin loss, that is I(x;,y:, f(x;)) =

max (0,1 — y; f(x;)) we get the following equation.
min min 3G B+ a2 kB
keI fFEXH, pat EO2A = (12)

subject to ylf(:c)= 1-¢
G =0

Recall the form of the C-SVM,

min - gflel?+ 53 G
subject to y;({xs,w) +b) =1 —¢

¢iz0foralli=1,...,m

and its dual,

max 30— 5 20 cucyay k(e @)
subject to >

0< o <

10y =0
Cforalli=1,...,m.
m

By considering the optimization problem dependent on
fin (12), we can use the derivation of the dual problem
of the standard C-SVM. Observe that C = A~!, and

we can rewrite ||k||2; = BT K3 due to the representer
theorem. Substituting the dual C-SVM problem into
(12), we get the following matrix equation,

17a - LaTG(B)a+ C%BTK,B

min max 3
B [}
subject to o'y =0 (13)
0<a<Eforalli=1,...,m
Bi =0

This is of the quadratic form of Corollary 6 where

r=a,0 =0, HO) = G(B), c(d) = -1, ¥ = C\QK,
the constraints are A = [y —y I —I]T and

a = [0 0 0 %1]T Applying Corollary 6,
we obtain the SDP in Example 3. To make the
different constraints explicit, we replace the matrix
constraint Az + a > 0 and its associated Lagrange
multiplier v with three linear constraints. We use vy
as the Lagrange multiplier for the equality constraint
aTyzO,nforQZO,andgforozg%1. |

Example 4 (Linear SVM (v-style)) An alterna-
tive parameterization of the £1 soft margin was in-
troduced by (Schélkopf et al., 2000), where the user
defined parameter v € [0,1] controls the fraction of
margin errors and support vectors. Using v-SVM
as Qemp, that is, for a given v, Qemp(k,X,Y) =
mingesc o iy G+ 5 |lwl3e —vp subject to y; f (i) >
p—C and (; =0 foralli=1,...,m. The correspond-
ing SDP is given by

e . 1 T1 AQ
minimize 5t; — xv+& o+ St

Bsv:m:€:x
subject to x =>0,n>0,£>0,6>=20
K2)| < t (14)
GB) =
-
|: ZT tq - 0

where z = vy + x1+n—¢&.

The value of a which optimizes the corresponding La-
grange function is G(3)'z, and the classification func-
tion, f = sign(K(a oy) — bogser), is given by f =
sign(KG(B)'(y o z) — 7).

Example 5 (Quadratic SVM) Instead of using an
0y loss class, (Mangasarian & Musicant, 2001) uses
an £ loss class,

[0 i yif(xi) =1
Wz, ys, f2:) = { (1 —y;f(x:))? otherwise ’

and reqularized the weight vector as well as the bias
term, that is the empirical quality functional is set

t0 Qomp(k, X,Y) = mingesc = 37, 2 + (w3 +

b%ﬁset) subject to y;f(x;) = 1 —¢; and § = 0 for all
i =1,...,m. This is also known as the Lagrangian
SVM. The resulting dual SVM problem has fewer con-
straints, as is evidenced by the smaller number of La-
grange multipliers needed in the SDP below.

A
%tl + TQtQ

minﬁimize
N
subject to n>0,8=0
K3 B]| < to (15)
HB) (m+1)
—
(n+1)" ty =0

where H(B) = Y(K + 1pxm + AmD)Y, and z = v1 +
n—E&.

The value of a which optimizes the corresponding La-
grange function is H(B)'(n + 1), and the classifica-
tion function, f = sign(K(aoy) — bogset), is given by
f=sign(KH(B)((n+1)oy) +y" (H(B)(n+1))).

Example 6 (Single class SVM) For unsupervised
learning, the single class SVM computes a func-
tion which captures regions in input space where the
probability density is in some sense large (Schélkopf
et al., 2001). The quality functional Qemp(k, X,Y) =
mingesc - S, G+ 3l|lwl|3e — p subject to f(x;) >
p—C,and G =0 foralli =1,...,m, and p > 0.
The corresponding SDP for this problem, also known
as novelty detection, is shown below.

inimi 1 T 1 _ Ae
Inlmmlgze sti+&' - — v+ 55t

By,
subject to 1 >0,£>0,6>0
IK? 5 <t (16)
K =z
-
ZT t =0

where z = y1 4+ n =&, and v € [0,1] a user selected
parameter controlling the proportion of the data to be
classified as novel.

The score to be used for novelty detection is given by
f = Ka — bogset, which reduces to f = n — &, by
substituting « = KT(y1 + 1 — €), bogser = Y1 and
K = reshape(K(3).

Example 7 (v-Regression) We derive the SDP for
v regression (Scholkopf et al., 2000), which auto-
matically selects the e insensitive tube for regres-
sion. As in the v-SVM case in Example 4, the user
defined parameter v controls the fraction of errors
and support vectors. Using the e-insensitive loss,
Uz, g, f(2i) = max(0,|y; — f(2:)] — €), and the
v-parameterized quality functional, Qemp(k,X,Y) =
mingese C (ve + = Y00, (G + () subject to f(x) —
yi <& =Gy fla) <e—¢h ¢ =0 for all

Data C-SVM v-SVM | Lag-SVM | Other | CV Tuned SVM
syndata | 2.842.2 1.24+1.3 2.5+2.4 NA 15.243.8
pima | 24.5+1.6 | 28.7+£1.5 | 23.7£1.7 | 23.5 24.84+1.9
ionosph | 7.3+1.9 7.4+1.7 7.1+2.0 5.8 6.8+1.7
wdbc 2.8+0.7 4.1£1.7 | 2.5+0.6 3.2 7.0£1.5
heart | 19.7£2.7 | 19.54+2.1 | 19.842.4 | 16.0 23.8£3.2
thyroid | 6.643.6 9.04+4.3 5.54+3.4 4.4 5.243.3
sonar | 15.2+3.2 | 15.74£3.9 | 14.9+3.4 15.4 15.843.6
credit | 14.841.7 | 13.841.1 | 15.3+1.8 22.8 24.3+1.9
glass 5.2+2.3 7.7+3.3 | 5.2£1.5 NA 6.0£1.7

Table 1. Hyperkernel classification: Test error and standard deviation in percent.The second, third and fourth columns
show the results of the hyperkernel optimizations of C-SVM (Example 3), v-SVM (Example 4) and Lagrangian SVM
(Example 5) respectively. The results in the fifth column shows the best results from (Freund & Schapire, 1996; Rétsch
et al., 2001; Meyer et al., 2003). The rightmost column shows a C-SVM tuned in the traditional way. A Gaussian RBF
kernel was tuned using 10-fold cross validation on the training data, with the best value of C shown in brackets. A grid
search was performed on (C,o). The values of C tested were {107,10%,...,10°}. The values of the kernel width, o,
tested were between 10% and 90% quantile of the distance between a pair of sample of points in the data. These quantiles
were estimated by a random 20% sample of the training data.

i=1,...,m and € > 0. The corresponding SDP is

A
st 4+ X+ &7 a5 + 53t

minimize
Byvsm,€sx
subject to x 20,7 >0,£>0,82>0
1K ? 8] < ta (17
FB) =
—
|: ZT 3] _O
_ | Y| 1 e 1
=[]][]

ro=| S W

The Lagrange function is minimized for o = F(8)'z,
and substituting into f = Ko — bogser, we obtain the
regression function f = [-K K]F(ﬂ)fz — .

Example 8 (Kernel Target Alignment) For the
Alignment approach (Cristianini et al., 2002), Qemp =
y' Ky, we directly minimize the regularized quality
functional, obtaining the following optimization prob-
lem,

A
sti+ S

miniﬁmize
subject to =0
LK Bl < ta (18)
K vy
{ s } =0

Note that for the case of Alignment, Qemp does not
provide a direct formulation for the hypothesis func-
tion, but instead, it determines a kernel matriz K.
This kernel matriz, K, can be utilized in a traditional
SVM to obtain a classification function.

6. Experiments

We used data from the UCI repository for our experi-
ments. Where the data was numerical, we did not per-
form any preprocessing of the data. Boolean attributes
were converted to {-1,1}, and categorical attributes
were arbitrarily assigned an order, and numbered {1,
2,...}. The hyperkernel used was as in Example 2.
This scaling freedom means that we did not have to
normalize data to some arbitrary distribution. Similar
to Ong et al. (2003), we used a low rank decomposi-
tion (Fine & Scheinberg, 2000; Zhang, 2001) for the
hyperkernel matrix.

6.1. Classification Experiments

A set of synthetic data sampled from two Gaussians
was created, a sample of which is illustrated in Fig-
ure 1. The rest of the datasets were UCI datasets for
binary classification tasks. The datasets were split into
10 random permutations of 60% training data and 40%
test data. We deliberately did not attempt to tune pa-
rameters and instead made the following choices uni-
formly for all datasets:

e The kernel width o was set to 50 times the 90%
quantile of the value of |x; —z;| over all the training
data, which ensures sufficient coverage.

e) was adjusted so that ﬁ = 100 (that is C' = 100 in
the Vapnik-style parameterization of SVMs). This
has commonly been reported to yield good results.

e v was set to 0.3. While this is clearly suboptimal for
many datasets, we decided to choose it beforehand
to avoid having to change any parameter. We could

use previous reports on generalization performance
to set v to this value for better performance.

e)\, for the Gaussian Harmonic Hyperkernel was cho-
sen to be 0.6 throughout, giving adequate coverage
over various kernel widths in (4) (small A, focus al-
most exclusively on wide kernels, A, close to 1 will
treat all widths equally).

e The hyperkernel regularization was set to A = 1.

We observe (Table 1) that our method achieves state of
the art results for all the datasets, except the “heart”
dataset. We also achieve results much better than pre-
viously reported for the “credit” dataset. Comparing
the results for C-SVM and Tuned SVM, we observe
that our method is always equally good, or better than
a C-SVM tuned using 10-fold cross validation.

6.2. Novelty Detection Experiments

To demonstrate that we can solve problems other than
binary classification using the same framework, we
performed novelty detection. We apply the singleclass
support vector machine (Example 6) to detect outliers
in the USPS data. A subset of 300 randomly selected
USPS images for the digit ‘5° were used for the ex-
periments. The parameter v was set to 0.1 for these
experiments, hence selecting up to 10% of the data as
outliers. The rest of the parameters were the same as
in the previous section. Since there is no quantitative
method for measuring the performance of novelty de-
tection, we cannot directly compare our results with
the traditional single class SVM. We can only subjec-
tively conclude, by visually inspecting a sample of the
digits, that our approach works for novelty detection
of USPS digits. Figure 2 shows a sample of the digits.
We can see that the algorithm identifies ‘novel’ digits,
such as in the top row of Figure 2. The bottom row
shows a sample of digits which have been deemed to
be ‘common’.

SO
SRSS

Figure 2. Top: Images of digit ‘5’ considered novel by al-
gorithm; Bottom: Common images of digit ‘5’

7. Discussion and Conclusion

We have shown that it is possible to define a convex op-
timization problem which learns the best kernel given
the data. The resulting problem, which has a Bayesian
interpretation, is expressed as a SDP. Since we can op-
timize over the whole class of kernel functions, we can
define more general kernels which may have many free
parameters, without overfitting. The experimental re-
sults on classification and novelty detection demon-
strate that it is possible to achieve the state of the art,
and in certain cases (such as the credit data) improve
the accuracy significantly.

This approach makes support vector based estimation
approaches more automated. Parameter adjustment
is less critical compared to the case when the kernel
is fixed. Future work will focus on deriving improved
statistical guarantees for estimates derived via hyper-
kernels which match the good empirical performance.

Acknowledgements This work was supported by
a grant of the Australian Research Council. The au-
thors would like to thank Laurent El Ghaoui, Michael
Jordan, John Lloyd, Robert Williamson and Daniela
Pucci de Farias for their helpful comments and sugges-
tions. The authors also thank Alexandros Karatzoglou
for his help with SVLAB.

References

Albert, A. (1969). Conditions for positive and nonneg-
ative definiteness in terms of pseudoinverses. SIAM
Journal on Applied Mathematics, 17, 434-440.

Bennett, K. P., & Mangasarian, O. L. (1992). Robust
linear programming discrimination of two linearly
inseparable sets. Optimization Methods and Soft-
ware, 1, 23-34.

Bousquet, O., & Herrmann, D. (2003). On the com-
plexity of learning the kernel matrix. Advances in
Neural Information Processing Systems 15.

Cortes, C., & Vapnik, V. (1995). Support vector net-
works. Machine Learning, 20, 273-297.

Crammer, K., Keshet, J., & Singer, Y. (2003). Kernel
design using boosting. Advances in Neural Informa-
tion Processing Systems 15.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kan-
dola, J. (2002). On kernel-target alignment. Ad-
vances in Neural Information Processing Systems 14
(pp. 367-373). Cambridge, MA: MIT Press.

Fine, S., & Scheinberg, K. (2000). Efficient SVM train-
ing using low-rank kernel representation (Technical
Report). IBM Watson Research Center, New York.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. Proceedings of the
International Conference on Machine Learing (pp.
148-146). Morgan Kaufmann Publishers.

Haussler, D. (1999). Convolutional kernels on dis-
crete structures (Technical Report UCSC-CRL-99-
10). Computer Science Department, UC Santa Cruz.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui,
L. E., & Jordan, M. (2002). Learning the kernel
matrix with semidefinite programming. Proceedings
of the International Conference on Machine Learn-
ing (pp- 323-330). Morgan Kaufmann.

MacKay, D. J. C. (1994). Bayesian non-linear mod-
elling for the energy prediction competition. Amer-
ican Society of Heating, Refrigerating and Air-
Conditioning Engineers Transcations, 4, 448-472.

Mangasarian, O. L., & Musicant, D. R. (2001).
Lagrangian support vector machines. Jour-
nal of Machine Learning Research, 1, 161-177.
http://www.jmlr.org.

Meyer, D., Leisch, F., & Hornik, K. (2003). The sup-
port vector machine under test. Neurocomputing.
Forthcoming.

Momma, M., & Bennett, K. P. (2002). A pattern
search method for model selection of support vector
regression. Proceedings of the Second SIAM Inter-
national Conference on Data Mining.

Ong, C. S., Smola, A. J., & Williamson, R. C. (2003).
Hyperkernels. Advances in Neural Information Pro-
cessing Systems 15.

Opper, M., & Winther, O. (2000). Gaussian processes
and SVM: Mean field and leave-one-out. Advances
in Large Margin Classifiers (pp. 311-326). Cam-
bridge, MA: MIT Press.

Rétsch, G., Onoda, T., & Miiller, K. R. (2001). Soft
margins for adaboost. Machine Learning, 42, 287—
320.

Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J.,
& Williamson, R. C. (2001). Estimating the support
of a high-dimensional distribution. Neural Compu-
tation, 13, 1443-1471.

Scholkopf, B., Smola, A., Williamson, R. C., &
Bartlett, P. L. (2000). New support vector algo-
rithms. Neural Computation, 12, 1207-1245.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite
programming. SIAM Review., 38, 49-95.

Zhang, T. (2001). Some sparse approximation bounds
for regression problems. Proc. 18th International
Conf. on Machine Learning (pp. 624-631). Morgan
Kaufmann, San Francisco, CA.

A. Proof of Proposition 5

We prove the proposition that the solution of the
quadratic minimax problem (6) is obtained by mini-
mizing the SDP (7).

Proof Rewrite the terms of the objective function
in (6) dependent on x in terms of their Wolfe dual.
The corresponding Lagrange function is

L(z,0,7) = —%xTH(G)J;—c(G)Tx—I—’yT(Ax—i—a), (19)

where v € RM is a vector of Lagrange multipliers with
~v = 0. By differentiating L(x,8,~) with respect to x
and setting the result to zero, one obtains that (19)
is maximized with respect to z for x = H(0)T(ATy —
¢(#)) and subsequently we obtain the dual

D(B,7) = 5(AT7 — c(6) THO) ATy~ c(6)) +7a.

(20)
Note that H(0)'H(0)H(0)! = H(9)". For equality
constraints in (6), such as Bx + b = 0, we get corre-
spondingly free dual variables. The dual optimization
problem is given by inserting (20) into (6)

mineimize L(ATy —c(0)TH(O)T (AT — c(0))
Y

+vTa+d(6)
subject to H(#) = 0,G(6) = 0,7 > 0.

(21)
Introducing an auxiliary variable, ¢, which serves as an
upper bound on the quadratic objective term gives an
objective function linear in ¢ and . Then (21) can be
written as

mineimize it+yTa+d(9)
et
subject to > (ATy —

(6))TH(B) (AT — c(9)),
H() =0,G(0) =0,y > 0.

(22)
From the properties of the Moore-Penrose inverse, we
get HO)H(0)T (AT~ — c(0)) = (ATy — ¢(0)). Since
H(0) = 0, by the Schur complement lemma (Albert,
1969), the quadratic constraint in (22) is equivalent to

(AWH—(QC)(Q))T SR P

