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ABSTRACT
Machine learning algorithms are increasingly used to make or

support important decisions about people’s lives. This has led to

interest in the problem of fair classification, which involves learn-

ing to make decisions that are non-discriminatory with respect to a

sensitive variable such as race or gender. Several methods have been

proposed to solve this problem, including fair representation learn-

ing, which cleans the input data used by the algorithm to remove

information about the sensitive variable. We show that using fair

representation learning as an intermediate step in fair classification

incurs a cost compared to directly solving the problem, which we

refer to as the cost of mistrust. We show that fair representation

learning in fact addresses a different problem, which is of interest

when the data user is not trusted to access the sensitive variable.

We quantify the benefits of fair representation learning, by showing

that any subsequent use of the cleaned data will not be too unfair.

The benefits we identify result from restricting the decisions of

adversarial data users, while the costs are due to applying those

same restrictions to other data users.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Machine learning; • Social and professional topics →

Socio-technical systems; • Theory of computation → Machine
learning theory.
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1 INTRODUCTION
Machine learning algorithms are used to make or support decisions

in a wide variety of contexts including financial and judicial risk

assessments, applicant screening for employment, and online ad

selection. Concerns about the fairness of these algorithms have

arisen as a result [1, 3, 8, 21]. Decisions made by machine learning
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algorithms typically cannot be controlled or interpreted as straight-

forwardly as those made by rule-based systems. Furthermore, arte-

facts of previous discrimination in an algorithm’s training data

may affect its decisions. Researchers have responded by developing

techniques to incorporate fairness into the design of machine learn-

ing algorithms [2, 22, 29]. While these techniques often focus on

achieving group fairness – i.e. not discriminating against particular

groups – another important consideration is individual fairness –
i.e. giving similar treatment to individuals who are similar [10].

The problem of fair classification involves making a decision
(e.g. whether to grant a loan) based on an input (e.g. individual
financial and demographic information) which accurately predicts a

target of interest (e.g. loan default), while at the same time avoiding

discrimination on the basis of an individual’s group membership

(e.g. race, gender) encoded in a sensitive variable. The data user is
trusted to access the sensitive variable in training and is responsible

for making decisions that appropriately consider accuracy and

fairness.

In contrast (see Figure 1), the problem of fair representation

learning involves producing a cleaned version of the input which

remains useful for predicting the target, but suppresses information

which could be used to discriminate based on the sensitive variable.

We now assume the data user is not trusted to access the sensitive

variable in training, which may be appropriate if the data user could

be either adversarial, i.e. interested in being unfair, or indifferent,
i.e. interested only in target accuracy [18]. This problem setting

involves three parties: a data producer who cleans the input data,
a data user who makes decisions from the data, and a data regula-
tor who oversees fair use of the data. For example, when deciding

whether to give an individual a loan, the data producer might be

a credit bureau, the data user a bank and the data regulator a gov-

ernment authority. Even within an organization, this separation of

concerns has the advantage of providing checks and balances.

1.1 Contributions of This Paper
This paper offers contributions that are have both scientific and

policy significance, and are technically novel.

Scientific significance: A plethora of methods use fair represen-

tation learning [5, 12, 14, 16–18, 27] as a technique for fair classifi-
cation. Recent work [19] has solved in analytical form a canonical

version of the fair classification problem. Is fair representation learn-

ing then to be relegated to a sub-optimal technique for a problem

better solved through other means? Developing more fair represen-

tation learning techniques does not address this question. Instead,

we show that fair representation learning in fact solves a different

problem – i.e. how to guarantee that decisions made by an untrusted

data user can be accurate but will not be unfair – and quantify the

costs and benefits of such representations in terms of fairness and
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Figure 1: Summary of (a) fair classification and (b) fair representation learning, showing train time data processing for both,
and costs and benefits of (b).

utility. This represents a progression in our scientific understand-

ing, given that this problem had never previously been formally

posed or analyzed.

Policy significance: Our approach makes possible a governance

model involving a separation of concerns between a data producer,

data user and data regulator (previous work assumes a single trusted

data user). The model enables a regulator to guarantee fairness even

if the data user is adversarial. This is an advance in the regulation

of algorithmic fairness, given that no alternatives currently exist in

the realistic setting where a data user is not trusted to be fair.

Novel technical results:We formalize the problem of fair represen-

tation learning as distinct from fair classification. By stating the data

producer’s optimization problem in (5) and showing that a proxy

problem can be solved without access to the target variable (Theo-

rem 1), we derive a principled way to select a fair representation

learning objective function (this is heuristic in prior work).

We present a novel quantification of the costs of using a given

representation (Section 4), a topic which had not previously been in-

vestigated. We identify costs both in terms of the accuracy-fairness

trade-off (i.e. the cost of mistrust given in closed form in Theorem

2 and bounded without requiring access to the target variable in

Theorem 3), and in terms of individual fairness (Theorem 4).

We present novel guarantees of the benefits of a given represen-

tation (Section 5). We do this for two common measures of fairness:

statistical parity (Theorem 5) and disparate impact (Theorem 6), by

computing the unfairness of an optimal adversary. Conditioning on

the target variable, our analysis can be also be used to guarantee

quantified versions of two other well-known fairness definitions:

equality of opportunity and equalized odds. We provide a proof

idea in the main paper for each result, while Appendix A provides

complete proofs.

2 BACKGROUND
We provide a brief summary of relevant work on parity-based

definitions of fairness, fair classification, and fair representation

learning.

Parity measures of quantitative fairness compare an algorithm’s

average decisions for different groups. For example, we may take

the difference between groups – known as statistical parity [6, 10]

– or the ratio between groups – known as disparate impact [14, 23].
We may wish to compute a parity measure only on a population

subset. Constructing subsets by conditioning on particular values

of the target variable yields variants [15] such as equality of op-
portunity (conditioning only on the positive class) and equalized
odds (conditioning separately on the positive and negative classes).1

However, when the training data labels are themselves affected by

discrimination, conditioning on the target variable may not be suit-

able [25]. If the population subset consists of individuals who are

similar according to some metric, we have individual fairness, also
known as avoiding disparate treatment [10, 20].

Methods for fair classification can be divided into pre-processing
– i.e. fair representation learning – which modifies the data that

the algorithm learns from [27]; in-processing, which modifies the

algorithm’s objective function to incorporate a fairness constraint

or penalty [4, 9, 11, 19, 25, 26]; and post-processing, which modifies

the predictions produced by the algorithm [15].

Several fair representation learning techniques have been pro-

posed. One such approach is to design the cleaned variable Z such

that the distributions ofZ conditioned on different values of the sen-

sitive variable S are similar [14, 16]. In addition to this requirement,

the pre-processing procedure may optimize the independence of Z

1
Satisfying equalized odds has also previously been referred to as avoiding disparate
mistreatment [25].



and S [17]. Adversarial approaches [5, 12, 18] use a neural network

to learn a representation function such that an adversary network

cannot accurately predict the sensitive variable from the cleaned

data. A problem variant, where the target is also modified and the

input is discrete, has been formulated as a convex optimization

problem [7].

What existing approaches typically do not offer (Theorem 4.1

from Feldman et al. 2015 is an exception) is a guarantee that all

uses of the cleaned data will be fair, or a quantification of the costs

of the cleaning process. We seek to provide a stronger theoretical

foundation for fair representation learning. This objective is similar

in spirit to that of privacy aware learning, which is concerned

with the mathematical trade-off between the privacy and utility

of data [24]. We also show that fair representation learning in fact

addresses a problem that is distinct from fair classification, which is

of interest when the data user is not trusted to access the sensitive

variable.

3 FAIR CLASSIFICATION VS FAIR
REPRESENTATION LEARNING

We introduce and compare the problems of fair classification and

fair representation learning. This formal comparison is itself novel

and is necessary for our subsequent analysis of the costs and bene-

fits of fair representation learning.

3.1 Fair Classification
In fair classification (Figure 1(a)), the data user trains on samples

of input variable X , target variable Y and sensitive variable S . The
samples are drawn from a distribution over X × Y × S, where

X is the set of possible inputs, Y is the set of possible labels and

S is the set of possible sensitive variable values. We focus on the

setting where Y ∈ {0, 1}, corresponding to binary classification,

and S ∈ {0, 1}, corresponding to some common sensitive vari-

able examples such as gender or race. Let πY := p (Y = 1) and
πS := p (S = 1) be prior probabilities, and ηY (x ) := p (Y = 1|X = x )
and ηS (x ) := p (S = 1|X = x ) be conditional probabilities, for the
positive classes of Y and S respectively.

The data user learns a stochastic hypothesis h : X → [0, 1]

which is used to construct decision variable Ŷ ∈ {0, 1}, where
h(x ) := p (Ŷ = 1|X = x ). Let µXYSŶ be the joint distribution of the

input, target, sensitive and decision variables.

At test time, the data user makes a decision using a sample of X ,

which may contain information about S . The quality of an hypothe-

sish in predictingY can be measured by a risk RY : [0, 1]X → [0, 1],

where we prefer hypotheses with a small value ofRY (h). A common

choice is the cost-sensitive risk.

Definition 1 (Cost-sensitive risk [13, 19, 28]). The cost-sensit-
ive risk of hypothesis h with respect to Y is

RY (h) := πY (1 − cY )p (Ŷ = 0|Y = 1) + (1 − πY )cYp (Ŷ = 1|Y = 0)

where cY ∈ [0, 1], p (Ŷ = 0|Y = 1) is known as the false negative
rate and p (Ŷ = 1|Y = 0) as the false positive rate.

We also wish to ensure that the hypothesis we learn is fair.

Two common fairness measures are statistical parity and disparate

impact, which compare outcomes for different sensitive variable

groups using their difference and ratio respectively. In the analy-

sis that follows we focus on the case where statistical parity and

disparate impact are computed on the joint distribution µXYSŶ .
However, computing these measures only on part of the distribu-

tion yields other variants of interest, such as conditioning on Y = 1

for quantified versions of equality of opportunity, or conditioning

separately on Y = 1 and Y = 0 for quantified versions of equalized

odds.

Definition 2 (Statistical parity [6, 10]). The statistical parity
of an hypothesis h is

SP (h) := p (Ŷ = 1|S = 1) − p (Ŷ = 1|S = 0).

Definition 3 (Disparate impact [14, 23]). The disparate impact
of an hypothesis h is

DI (h) :=
p (Ŷ = 1|S = 0)

p (Ŷ = 1|S = 1)
.

Notice that SP (h) ∈ [−1, 1], with equality of outcome corre-

sponding to 0, while DI (h) ∈ [0,∞), with equality of outcome

corresponding to 1. In both cases we want a value that is neither

too low nor too high. It has been shown that this is equivalent to

requiring that h and the ‘anti-classifier’ 1 − h both have values that

are not too low (see Appendix C of [19]).

The fair classification problem then takes the form, for some

R
fair
∈ {SP ,DI }:

min

h∈H
RY (h) subject to min[R

fair
(h),R

fair
(1 − h)] ≥ τ , (1)

where H := [0, 1]X and τ is a constant measuring the required

level of fairness. For DI , τ ∈ [0,∞), while for SP , τ ∈ [−1, 0] since
SP (1 − h) = −SP (h).

It has been shown that a constraint on SP or DI of the type in (1)

is equivalent to a constraint on a cost sensitive risk with respect to S
(see Lemmas 1 and 2 of [19]). Using Definition 1, this cost sensitive

risk is written as:

RS (h) := πS (1−cS )p (Ŷ = 0|S = 1)+ (1−πS )cSp (Ŷ = 1|S = 0), (2)

where cS ∈ [0, 1].
It is more convenient to work with an unconstrained variant of

the fair classification problem:

min

h∈H
[RY (h) − λRS (h)], (3)

where λ is a constant (not necessarily non-negative) controlling

the trade-off between accuracy with respect to Y and fairness with

respect to S . It has been shown [19] that for some choice of λ, some

solution to (3) is also a solution to (1).

Definition 4 (Optimal fair classification). Let the combined
risk

RYS (h) := RY (h) − λRS (h).

Let RYS (h∗) be the value of (3) and h∗ be a corresponding hypothesis.

Subsequently we will compare optimal fair classification to the

case where we instead use fair representation learning as an inter-

mediate step in fair classification.



3.2 Fair Representation Learning
In fair representation learning (Figure 1(b)), the data producer trains

on samples of X , S and Y (we also examine the case where the data

producer does not access Y ), and learns the representation function

f : X → Z, whereZ is the set of possible cleaned variable values.

The data producer samples X and applies f to each sample to

produce cleaned variable Z := f (X ). The data producer learns f
so that Z is still useful for predicting Y but suppresses information

about S .
Let η

f
Y (z) := p (Y = 1|Z = z) and η

f
S (z) := p (S = 1|Z = z) be

conditional probabilities of the positive classes ofY and S induced by
f . The data user trains on samples ofZ andY and learns a stochastic

hypothesis д : Z → [0, 1], which is used to construct modified

decision variable Ŷ f ∈ {0, 1} where д(z) := p (Ŷ f = 1|Z = z). At
test time, the data producer samples X and passes it through f to

produce a sample of Z , from which the data user makes a decision.

When the data user is not trusted, we are interested in constrain-

ing how unfair an adversarial user can be with the cleaned data. As

in the fair classification case, this is equivalent to a constraint on an

adversary’s cost-sensitive risk with respect to S . We are also inter-

ested in ensuring that the cleaned data is still useful for predicting

the target. We are therefore interested in the following problem:

min

f ∈F
RY (д

∗
Y ◦ f ) subject to RS (д

∗
S ◦ f ) ≥ τ , (4)

where τ is a constant measuring the required level of fairness, ◦ is

function composition, д∗Y ∈ argmin

д∈G
RY (д ◦ f ) is an optimal indif-

ferent user of the cleaned data, д∗S ∈ argmin

д∈G
RS (д ◦ f ) is an optimal

adversary using the cleaned data, G := [0, 1]Z and F := ZX .

It is more convenient to work with the following unconstrained

problem variant:

min

f ∈F
[RY (д

∗
Y ◦ f ) − λRS (д

∗
S ◦ f )]. (5)

Using the form of the minimum cost-sensitive risk from [28], we

may express the terms in (5) as follows:

RY (д
∗
Y ◦ f ) = EZ [min((1 − cY )η

f
Y (Z ), cY (1 − η

f
Y (Z )))] (6)

RS (д
∗
S ◦ f ) = EZ [min((1 − cS )η

f
S (Z ), cS (1 − η

f
S (Z )))]. (7)

Adversarial neural networks have previously been used to esti-

mate д∗Y and д∗S [5, 12, 18]. We observe that (6) and (7) simplify the

fair representation learning cost function (5) by removing the two

inner minimizations. Of course, there remains the task of estimating

the underlying distribution and computing the outer minimization.

We focus on the case where the data producer learns a represen-

tation without using the target variable. This allows a single fair

representation to be learned that can be used for multiple tasks. It

also covers the situation where the data producer does not have

access to the target variable. For example, Y contains commercially

confidential information (e.g. defaults on a specific type of loan)

known to the data user (e.g. a bank) but not the data producer (e.g.

a credit bureau). Furthermore, we focus on the case Z = X is a

Euclidean space, which facilitates our analysis and covers many

practical applications. In this case, we define average reconstruction
error and show its use as a proxy for task performance.

Definition 5 (Average reconstruction error). Suppose that
Z = X is a Euclidean space. Let EX ∥X − f (X )∥2 be the average
reconstruction error of f with respect toX , where ∥·∥2 is the Euclidean
vector norm.

Assuming the data producer does not access the target variable,

we propose the following variant of the fair representation learning

problem:

min

f ∈F
[EX ∥X − f (X )∥2 − λRS (д

∗
S ◦ f )]. (8)

We relate (8) and (5) as follows. This result allows us to select a

principled objective function for the data producer.

Theorem 1 (Fair representation learning without access-

ing target variable). Suppose thatZ = X and we have the Lips-
chitz condition that for some non-negative constant lY

∀x ,x ′ ∈ X, |ηY (x ) − ηY (x
′) | ≤ lY ∥x − x

′∥2. (9)

Then any f ∈ F minimizing

EX ∥X − f (X )∥2 − λRS (д
∗
S ◦ f )

also minimizes an upper bound on

RY (д
∗
Y ◦ f ) − lY λRS (д

∗
S ◦ f ).

Proof idea. We upper bound RY (д
∗
Y ◦ f ) − lY λRS (д

∗
S ◦ f ) by

re-expressing the risks using Lemma 9 from [19], and making use

of the Lipschitz condition. We then observe that the f minimizing

this upper bound also minimizes EX ∥X − f (X )∥2 − λRS (д
∗
S ◦ f ).

See Appendix A.1 for complete proof. □

4 COSTS OF FAIR REPRESENTATION
LEARNING

We identify and quantify two costs of using fair representation

learning rather than entrusting a single trusted data user to make

decisions. These costs are incurred by decision-makers, as well as

individuals about whom decisions are made. The first cost, which

we refer to as the cost of mistrust, is the difference in the optimal

fairness-accuracy trade-off available with the cleaned data produced

by a representation function f compared to the original input. This

cost is of interest to the data user – as well as potentially the data

regulator. The second cost quantifies the extent to which individual

fairness is violated by using a representation function f , which is

primarily of interest to the data regulator. We show that both of

these costs can be estimated by a data producer without accessing

the target variable.

4.1 Cost of Mistrust
Suppose that after cleaning the data with the representation func-

tion f , we solve the following fair classification problem, which is

equivalent to (3) but using the cleaned data.

min

д∈G
[RY (д ◦ f ) − λRS (д ◦ f )] (10)

Definition 6 (Cost of mistrust). Let д∗ and h∗ be hypotheses
minimizing (10) and (3) respectively, where the value of λ is the same
in both equations. The cost of mistrust for a representation function f
is defined as

RYS (д
∗ ◦ f ) − RYS (h

∗).



The cost of mistrust is non-negative because f restricts the

hypothesis class to a subset ofH . If λ = 0 in (10) and (3), f may incur

a cost for the target accuracy of the indifferent user, which seems

unsurprising. However, for general λ we see that f may also incur

a cost for fair classification. Without access to the sensitive variable

S the data user has no way to estimate RS (д ◦ f ) in (10). However,

even if they could somehow guess this quantity, f may create a

suboptimal trade-off between fairness and accuracy compared to

the trade-off available to a trusted data user using the original input.

We now show in Theorem 2 that we can express the cost of

mistrust in analytical form. In our result, we use the expressions

h∗ (x ) = 1(ηY (x ) − cY ≥ λ(ηS (x ) − cS )) (11)

and

д∗ (z) = 1(ηfY (z) − cY ≥ λ(η
f
S (z) − cS )), (12)

obtained from Proposition 4 of [19].

Theorem 2 (Analytical form of cost of mistrust). The cost
of mistrust may be expressed as

RYS (д
∗ ◦ f ) − RYS (h

∗) =

EX [min(η
f
Y ( f (X )) − cY , λ(η

f
S ( f (X )) − cS ))

−min(ηY (X ) − cY , λ(ηS (X ) − cS ))]. (13)

The cost of mistrust may be decomposed into accuracy and fairness
differences, where the accuracy difference is

RY (д
∗ ◦ f ) − RY (h

∗) =

EX [h
∗ (X ) (ηY (X ) − cY ) − д

∗ ( f (X )) (η
f
Y ( f (X )) − cY )], (14)

and the fairness difference is

RS (д
∗ ◦ f ) − RS (h

∗) =

EX [h
∗ (X ) (ηS (X ) − cS ) − д

∗ ( f (X )) (η
f
S ( f (X )) − cS )], (15)

which are combined in the overall cost of mistrust

RYS (д
∗◦f )−RYS (h

∗) = RY (д
∗◦f )−RY (h

∗)−λ(RS (д
∗◦f )−RS (h

∗)).

Proof idea. Apply Lemma 9 of [19] to express each ofRY (д
∗◦f ),

RY (h
∗), RS (д

∗ ◦ f ) and RS (h
∗). Combining these yields a compact

expression for RYS (д
∗ ◦ f ) − RYS (h

∗). See Appendix A.2 for com-

plete proof. □

The expression (13) for the cost of mistrust allows us to measure

the quality of the fairness-accuracy trade-off available using f
compared to using the original input. The decomposition reveals

that the signs of the accuracy and fairness differences may vary.

However, since the cost of mistrust is non-negative, for a fixed

value of RS we incur a value of RY that is at least as large using f
as with the original input.

For intuition about the expression (13) for the cost of mistrust,

consider a point z ∈ Z and its preimage Xz := {x ∈ X| f (x ) = z}.
If all x ∈ Xz have the same value of 1(ηY (x ) − cY ≥ λ(ηS (x ) − cS )),
then the expectation conditioned on x ∈ Xz will be zero, otherwise

it will be positive. Hence the cost of mistrust will be small when

points mapped to the same value of z tend to have the same value

of 1(ηY (x ) − cY ≥ λ(ηS (x ) − cS )).

We are interested in situations where the data producer can

guarantee that the cost of mistrust is small without accessing Y .
When Z = X and the conditional distributions ηY (x ) and ηS (x )
are smooth, the cost of mistrust can be upper bounded in terms

of average reconstruction error. This result, shown in Theorem 3,

allows the data producer to bound the cost of mistrust using only

X and Z .

Theorem 3 (Upper bound on cost of mistrust with smooth

conditional distributions). SupposeZ = X is a Euclidean space
and we have the Lipschitz conditions that for some non-negative
constants lY and lS

∀x ,x ′ ∈ X, |ηY (x ) − ηY (x
′) | ≤ lY ∥x − x

′∥2 (16)

and
∀x ,x ′ ∈ X, |ηS (x ) − ηS (x

′) | ≤ lS ∥x − x
′∥2. (17)

Then

RYS (д
∗ ◦ f ) − RYS (h

∗) ≤ (lY + λlS )EX ∥X − f (X )∥2.

Proof idea. We observe that RYS (h
∗ ◦ f ) is an upper bound on

RYS (д
∗ ◦ f ). We use Lemma 9 of [19] to re-express RYS . We then

use the Lipschitz conditions to upper bound RYS (h
∗ ◦ f )−RYS (h

∗).
See Appendix A.3 for complete proof. □

4.2 Cost for Individual Fairness
We investigate the cost of using a given representation in terms of

individual fairness [10]. This notion requires that similar decisions

should be made for similar individuals, i.e. decisions are smooth.

It is possible that a representation function maps points that are

nearby in the input space to points that are distant from each other

in the representation space. Therefore, smooth hypotheses may not

be individually fair when applied to the cleaned data. We wish to

quantify this cost for individual fairness by upper bounding the

individual unfairness of an arbitrary smooth hypothesis applied

to the cleaned data. We show that it is possible for a data user to

provide this kind of certification to a data regulator by inspecting

Z and X .

First, we restate a previous definition of individual fairness.

Definition 7 (Individual fairness [10]). Let D and d be sub-
additive functions. Hypothesis h is D,d−individually fair if

∀x ,x ′ ∈ X,D (h(x ),h(x ′)) ≤ d (x ,x ′).

We also give a novel quantitative notion of individual unfair-
ness by measuring the probability that a pair of randomly selected

individuals will be treated unfairly according to Definition 7.

Definition 8 (Individual unfairness). Hypothesis h has D,d−
individual unfairness with respect to X defined as

IUD,d (h) := p (D (h(x ),h(x ′)) > d (x ,x ′)),

where x and x ′ are independent random samples of X .

In order to bound the level of individual unfairness induced by a

representation, we introduce the following definition.

Definition 9 (Large reconstruction error rate). Suppose
Z = X. Let ϵ be a non-negative constant. Let p (d (X , f (X )) > ϵ ) be
the large reconstruction error rate of f .



In Theorem 4 we show that if the large reconstruction error rate

is small, then any hypothesis that is smooth (i.e. individually fair

when applied to the original input) will not be too individually

unfair when applied to the cleaned data. We observe that there

is a tension between guaranteeing group fairness, which involves

removing information to protect an adversary from inferring the

sensitive variable, and individual fairness, which requires preserv-

ing information from the original input.

Theorem 4 (Upper bound on individual unfairness). Suppose
Z = X. Let

dϵ (x ,x
′) := d (x ,x ′) + 2ϵ

and leth be any individually fair hypothesis. Then theD,dϵ−individual
unfairness of h ◦ f is upper bounded as follows:

IUD,dϵ (h ◦ f ) ≤ 2p (d (X , f (X )) > ϵ ).

Proof idea. Let δ := p (d (X , f (X )) > ϵ ). For randomly drawn x
and x ′, d (x , f (x )) ≤ ϵ and d (x ′, f (x ′)) ≤ ϵ with probability at least
1 − 2δ by the union bound. If these statements hold, by the triangle

inequality D (h( f (x ),h( f (x ′)) ≤ d (x ,x ′) + 2ϵ . See Appendix A.4

for complete proof. □

5 BENEFITS OF FAIR REPRESENTATION
LEARNING

We quantify the benefits of some representation function f by

measuring the discrimination achieved by an optimal adversary

using Z , the representation variable induced by f . We show that a

data producer can do this for both statistical parity and disparate

impact. We can compute these two quantities directly for a given f ,
so that unlike in the optimization problems we considered earlier

there is no need to use a cost-sensitive risk. The quantities we

obtain can be given to a data regulator to certify that any use of the

cleaned data will not be too unfair. If the data producer has access to

the target variable, these quantities can also be evaluated on subsets

of the data with the same value of the target, to measure quantified

versions of equality of opportunity (conditioning on Y = 1) and

equalized odds (conditioning separately on Y = 1 and Y = 0) [15].

5.1 Benefit for Statistical Parity
We certify that any decision using the cleaned data has statistical

parity (Definition 2) that is neither too small nor too large. In

Theorem 5, we show that the maximum and minimum statistical

parity of an adversary using Z can be expressed in closed form. The

maximum and minimum will be closer if the induced conditional

probability η
f
S (z) does not deviate too much on average from the

prior πS . If η
f
S (z) = πS everywhere, we have statistical parity of

zero, i.e. exact equality of outcome.

Theorem 5 (Statistical parity of optimal adversary). An
adversarial user of Z achieves maximum and minimum statistical
parity

max

д∈G
SP (д ◦ f ) = 1 − EZ [min(

η
f
S (Z )

πS
,
1 − η

f
S (Z )

1 − πS
)]

min

д∈G
SP (д ◦ f ) = −1 + EZ [min(

η
f
S (Z )

πS
,
1 − η

f
S (Z )

1 − πS
)].

Proof idea. Observe that statistical parity is a linear transfor-

mation of balanced error rate. Apply the minimum balanced er-

ror rate from Equation 32 of [28]. See Appendix A.5 for complete

proof. □

5.2 Benefit for Disparate Impact
We certify that any decision using the cleaned data has disparate

impact (Definition 3) that is neither too small nor too large. In

Theorem 6, we show that the maximum and minimum disparate

impact of an adversary using Z can be expressed in closed form.

The maximum and minimum will be closer if the induced condi-

tional probability η
f
S (z) never deviates too much from the prior

πS . If η
f
S (z) = πS everywhere, we have disparate impact of one, i.e.

exact equality of outcome. Observe how disparate impact is more

sensitive than statistical parity, since it requires η
f
S (z) to be close

to πS everywhere rather than only in expectation.

Theorem 6 (Disparate impact of optimal adversary). Let
η
f
S := max

z∈Z
η
f
S (z) and η

f
S := min

z∈Z
η
f
S (z). An adversarial user of Z

achieves maximum and minimum disparate impact

max

д∈G
DI (д ◦ f ) =

πS (1 − η
f
S )

η
f
S (1 − πS )

min

д∈G
DI (д ◦ f ) =

πS (1 − η
f
S )

η
f
S (1 − πS )

.

Proof idea. Re-express DI (д ◦ f ) using the law of total proba-

bility, the fact that Ŷ f
and S are conditionally independent given

Z , and Bayes’ rule. Using this form we obtain the maximum and

minimum values of DI (д ◦ f ) and the corresponding choices of д.
See Appendix A.6 for complete proof. □

6 CONCLUSION
We have quantified the costs – an inferior fairness-accuracy trade-

off and an increase in individual unfairness – incurred by a given

representation. We have also quantified the benefits – narrower

bands of statistical parity and disparate impact achievable by an

adversary – of such a representation. The benefits result from re-

stricting the decisions of adversarial data users, while the costs are

due to applying those same restrictions to other data users. We

showed how a data producer can estimate these costs and bene-

fits, even without access to the target variable, to support a novel

three-party governance model entailing a separation of concerns

between fairness and accuracy. Future directions of interest include

extending our results to finite samples, stochastic representation

functions, multiple sensitive groups and variables, more general

representation spaces, and other fairness definitions.

ACKNOWLEDGMENTS
We would like to thank the reviewers for their useful feedback.

We would also like to thank Aditya Menon for discussions during

the development of this work. The research was supported by an

Australian Government Research Training Program Scholarship

and a CSIRO Data61 Top-Up Scholarship.



REFERENCES
[1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Ma-

chine Bias. https://www.propublica.org/article/machine-bias-risk-assessments-

in-criminal-sentencing.

[2] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2018. Fairness and Machine
Learning. fairmlbook.org.

[3] Solon Barocas and Andrew D Selbst. 2016. Big Data’s Disparate Impact. California
Law Review 104 (2016), 671.

[4] Yahav Bechavod and Katrina Ligett. 2017. Penalizing Unfairness in Binary Clas-

sification. arXiv 1707.00044.

[5] Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. 2017. Data Decisions and

Theoretical Implications when Adversarially Learning Fair Representations. In

FAT/ML Workshop.
[6] Toon Calders and Sicco Verwer. 2010. Three Naive Bayes Approaches for

Discrimination-Free Classification. Data Mining and Knowledge Discovery 21, 2

(2010), 277–292.

[7] Flavio P Calmon, Dennis Wei, Karthikeyan Natesan Ramamurthy, and Kush R

Varshney. 2017. Optimized Data Pre-Processing for Discrimination Prevention.

In Advances in Neural Information Processing Systems.
[8] Amit Datta, Michael Carl Tschantz, and Anupam Datta. 2015. Automated Experi-

ments on Ad Privacy Settings. Proceedings on Privacy Enhancing Technologies
2015, 1 (2015), 92–112.

[9] Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massim-

iliano Pontil. 2018. Empirical Risk Minimization Under Fairness Constraints. In

Advances in Neural Information Processing Systems.
[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness Through Awareness. In Innovations in Theoretical Computer
Science Conference.

[11] Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Mark DM Leiserson.

2018. Decoupled Classifiers for Group-Fair and Efficient Machine Learning. In

Conference on Fairness, Accountability and Transparency.
[12] Harrison Edwards and Amos Storkey. 2016. Censoring Representations with an

Adversary. In International Conference on Learning Representations.
[13] Charles Elkan. 2001. The Foundations of Cost-Sensitive Learning. In International

Joint Conference on Artificial Intelligence.
[14] Michael Feldman, Sorelle A Friedler, JohnMoeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2015. Certifying and Removing Disparate Impact. In Inter-
national Conference on Knowledge Discovery and Data Mining.

[15] Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of Opportunity in

Supervised Learning. In Advances in Neural Information Processing Systems.
[16] James Johndrow and Kristian Lum. 2017. An Algorithm for Removing Sensitive

Information: Application to Race-Independent Recidivism Prediction. arXiv

1703.04957.

[17] Christos Louizos, Kevin Swersky, Yujia Li, Richard Zemel, and Max Welling.

2016. The Variational Fair Autoencoder. In International Conference on Learning
Representations.

[18] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. 2018. Learning

Adversarially Fair and Transferable Representations. In International Conference
on Machine Learning.

[19] Aditya Krishna Menon and Robert C. Williamson. 2018. The Cost of Fairness in

Binary Classification. In Conference on Fairness, Accountability and Transparency.
[20] Shira Mitchell and Jackie Shadlen. 2018. Mirror Mirror: Reflections on Quantita-

tive Fairness. https://speak-statistics-to-power.github.io/fairness.

[21] Cathy O’Neil. 2017. Weapons of Math Destruction: How Big Data Increases In-
equality and Threatens Democracy. Broadway Books.

[22] Andrea Romei and Salvatore Ruggieri. 2014. A Multidisciplinary Survey on

Discrimination Analysis. The Knowledge Engineering Review 29, 5 (2014), 582–

638.

[23] United States Equal Opportunity Employment Commission. 1978. Uniform

Guidelines on Employee Selection Procedures.

[24] Martin J Wainwright, Michael I Jordan, and John C Duchi. 2012. Privacy Aware

Learning. In Advances in Neural Information Processing Systems.
[25] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P

Gummadi. 2017. Fairness Beyond Disparate Treatment &Disparate Impact: Learn-

ing Classification Without Disparate Mistreatment. In International Conference
on World Wide Web.

[26] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P

Gummadi. 2017. Fairness Constraints: Mechanisms for Fair Classification. In

International Conference on Artificial Intelligence and Statistics.
[27] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013.

Learning Fair Representations. In International Conference on Machine Learning.
[28] Ming-Jie Zhao, Narayanan Edakunni, Adam Pocock, and Gavin Brown. 2013. Be-

yond Fano’s Inequality: Bounds on the Optimal F-Score, BER, and Cost-Sensitive

Risk and their Implications. Journal of Machine Learning Research 14 (2013),

1033–1090.

[29] Indre Zliobaite. 2015. A Survey on Measuring Indirect Discrimination in Machine

Learning. arXiv 1511.00148.

A THEOREM PROOFS
We present complete proofs of our theoretical results.

A.1 Proof of Theorem 1
Proof. Leth∗Y ∈ argmin

h∈H
RY (h), which is given by the expression

h∗Y (x ) = 1(ηY (x ) ≥ cY ) [28].

RY (д
∗
Y ◦ f ) − lY λRS (д

∗
S ◦ f )

≤ RY (h
∗
Y ◦ f ) − lY λRS (д

∗
S ◦ f )

= RY (h
∗
Y ◦ f ) − RY (h

∗
Y ) + RY (h

∗
Y ) − lY λRS (д

∗
S ◦ f )

= EX [(cY − ηY (X ))h∗Y ( f (X ))] − EX [(cY − ηY (X ))h∗Y (X )]

+ RY (h
∗
Y ) − lY λRS (д

∗
S ◦ f ) (18)

= EX [(cY − ηY (X )) (h∗Y ( f (X )) − h∗Y (X ))]

+ RY (h
∗
Y ) − lY λRS (д

∗
S ◦ f ) (19)

≤ lYEX ∥X − f (X )∥2 + RY (h
∗
Y ) − lY λRS (д

∗
S ◦ f ). (20)

For (18) we apply Lemma 9 from [19]. For (19) we apply linearity

of expectation. For (20), for any x where h∗Y (x ) , h
∗
Y ( f (x )), there

must exist some x ′ on the decision boundary of h∗ such that

cY − ηY (x
′) = 0 (21)

and

∥x − x ′∥2 ≤ ∥x − f (x )∥2. (22)

Combining (21) and (22) with the Lipschitz condition (9) yields

cY − ηY (x ) ≤ cY − ηY (x
′) + lY ∥x − x

′∥2 ≤ lY ∥x − f (x )∥2.

Since this is true for every x it is also true in expectation.

We then observe

argmin

f ∈F
[lYEX ∥X − f (X )∥2 + RY (h

∗
Y ) − lY λRS (д

∗
S ◦ f )]

= argmin

f ∈F
[EX ∥X − f (X )∥2 − λRS (д

∗
S ◦ f )]. □

A.2 Proof of Theorem 2
Proof. First we show the analytical expression for the cost of

mistrust (13). Applying Proposition 4 of [19], we have that (11) and

(12) are hypotheses h∗ and д∗ corresponding to solutions to (3) and
(10) respectively.

EX [min(ηY (X ) − cY , λ(ηS (X ) − cS ))] (23)

= EX [(1 − h
∗ (X )) (ηY (X ) − cY )] + λEX [h

∗ (X ) (ηS (X ) − cS )]
(24)

= πY − cY − EX [h
∗ (X ) (ηY (X ) − cY )] + λEX [h

∗ (X ) (ηS (X ) − cS )]

= πY − cY + RY (h
∗) − (1 − cY )πY + λEX [h

∗ (X ) (ηS (X ) − cS )]
(25)

= πY − cY + RY (h
∗) − (1 − cY )πY − λRS (h

∗) + λ(1 − cS )πS
(26)

= RY (h
∗) − λRS (h

∗) − cY (1 − πY ) + λ(1 − cS )πS .

(24) follows from the form of h∗ given in (11). (25) and (26) both

involve substitutions using Lemma 9 from [19].

Similarly, using the form of д∗ from (12) we conclude that

EX [min(η
f
Y ( f (X )) − cY , λ(η

f
S ( f (X )) − cS ))] (27)

= RY (д
∗ ◦ f ) − λRS (д

∗ ◦ f ) − cY (1 − πY ) + λ(1 − cS )πS . (28)



The result (13) follows by subtracting (23) from (27) and applying

linearity of expectation.

The decomposed form follows from applying Lemma 9 of [19] to

each of RY (д
∗ ◦ f ), RY (h

∗), RS (д
∗ ◦ f ) and RS (h

∗), then applying

linearity of expectation to express RY (д
∗ ◦ f ) − RY (h

∗) as in (14)

and RS (д
∗ ◦ f ) − RS (h

∗) as in (15). □

A.3 Proof of Theorem 3
Proof.

RYS (д
∗ ◦ f ) − RYS (h

∗)

≤ RYS (h
∗ ◦ f ) − RYS (h

∗)

= RY (h
∗ ◦ f ) − RY (h

∗) − λ(RS (h
∗ ◦ f ) − RS (h

∗))

= EX [(cY − ηY (X )) (h∗ ( f (X )) − h∗ (X ))]

− λEX [(cS − ηS (X )) (h∗ ( f (X )) − h∗ (X ))] (29)

= EX [(cY − ηY (X ) − λ(cS − ηS (X ))) (h∗ ( f (X )) − h∗ (X ))] (30)

≤ (lY + λlS )EX ∥X − f (X )∥2. (31)

(29) is by Lemma 9 from [19] and linearity of expectation. (30) is

by linearity of expectation. For (31), using the form of h∗ from (11),

for any x where h∗ (x ) , h∗ ( f (x )), there must exist some x ′ on the

decision boundary of h∗ such that

cY − ηY (x
′) − λ(cS − ηS (x

′)) = 0 (32)

and

∥x − x ′∥2 ≤ ∥x − f (x )∥2. (33)

Combining (32) and (33) with the Lipschitz conditions (16) and (17),

cY − ηY (x ) − λ(cS − ηS (x ))

≤ cY − ηY (x
′) + lY ∥x − x

′∥2 − λ(cS − ηS (x
′) − lS ∥x − x

′∥2)

≤ (lY + λlS )∥x − f (x )∥2.

Since this is true for every x it is also true in expectation. □

A.4 Proof of Theorem 4
Proof. Let δ := p (d (X , f (X )) > ϵ ). Let h be a D,d−individually

fair hypothesis (see Definition 7). Consider points x and x ′ drawn
independently at random using the input X . With probability 1− δ ,

d (x , f (x )) ≤ ϵ . (34)

Similarly, with probability 1 − δ ,

d (x ′, f (x ′)) ≤ ϵ . (35)

By the union bound, both statements hold with probability at least

1 − 2δ . In that case, the following statements also hold:

D (h( f (x ),h( f (x ′))

≤ D (h( f (x )),h(x )) + D (h(x ),h( f (x ′))) (36)

≤ ϵ + D (h(x ),h( f (x ′))) (37)

≤ ϵ + D (h(x ),h(x ′)) + D (h(x ′),h( f (x ′))) (38)

≤ 2ϵ + D (h(x ),h(x ′)) (39)

≤ 2ϵ + d (x ,x ′). (40)

(36) and (38) use the triangle inequality since D is subadditive.

(37) and (39) hold due to (34) and (35) respectively, along with

Definition 7. (40) uses Definition 7. Therefore IUD,dϵ (h ◦ f ) ≤ 2δ .
□

A.5 Proof of Theorem 5
Proof. Let

BER (h) :=
1

2

p (Ŷ = 0|S = 1) +
1

2

p (Ŷ = 1|S = 0)

be the balanced error rate of an hypothesis h. Observe the fact that
SP (h) = 1 − 2BER (h) for all h. Therefore

max

д∈G
SP (д ◦ f )

= 1 − 2min

д∈G
BER (д ◦ f )

= 1 − EZ [min(
η
f
S (Z )

πS
,
1 − η

f
S (Z )

1 − πS
)], (41)

where (41) uses Equation 32 from [28].

Similarly, we may show that

min

д∈G
SP (д ◦ f ) = −1 + EZ [min(

η
f
S (Z )

πS
,
1 − η

f
S (Z )

1 − πS
)],

using the fact that BER (h) = 1 − BER (1 − h) for all h. □

A.6 Proof of Theorem 6
Proof. Disparate impact can be expressed as follows:

DI (д ◦ f )

=

∫
z p (Z = z |S = 0)p (Ŷ f = 1|S = 0,Z = z)dz∫
z p (Z = z |S = 1)p (Ŷ f = 1|S = 1,Z = z)dz

=

∫
z p (Z = z |S = 0)д(z)dz∫
z p (Z = z |S = 1)д(z)dz

(42)

=
πS
∫
z p (Z = z) (1 − η

f
S (z))д(z)dz

(1 − πS )
∫
z p (Z = z)η

f
S (z)д(z)dz

(43)

=
πSEZ [(1 − η

f
S (Z ))д(Z )]

(1 − πS )EZ [η
f
S (Z )д(Z )]

. (44)

For (42) we used the fact that Ŷ f
and S are conditionally inde-

pendent given Z . For (43) we used Bayes’ rule.

Recall that η
f
S := max

z∈Z
η
f
S (z) and η

f
S := min

z∈Z
η
f
S (z). Let γ be an

arbitrary constant in the range (0, 1]. Using (44), we have:

max

д∈G
DI (д ◦ f ) =

πS (1 − η
f
S )

η
f
S (1 − πS )

where the maximum is obtained for

д(z) =



γ if η
f
S (z) = η

f
S

0 otherwise.

Similarly,

min

д∈G
DI (д ◦ f ) =

πS (1 − η
f
S )

η
f
S (1 − πS )

where the minimum is obtained for

д(z) =



γ if η
f
S (z) = η

f
S

0 otherwise.

□
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