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Learning SVM in Kreı̆n Spaces
Gaëlle Loosli, Stéphane Canu, and Cheng Soon Ong,

Abstract—This paper presents a theoretical foundation for an SVM solver in Kreı̆n spaces. Up to now, all methods are based
either on the matrix correction, or on non-convex minimization, or on feature-space embedding. Here we justify and evaluate a
solution that uses the original (indefinite) similarity measure, in the original Kreı̆n space. This solution is the result of a stabilization
procedure. We establish the correspondence between the stabilization problem (which has to be solved) and a classical SVM
based on minimization (which is easy to solve). We provide simple equations to go from one to the other (in both directions).
This link between stabilization and minimization problems is the key to obtain a solution in the original Kreı̆n space. Using KSVM,
one can solve SVM with usually troublesome kernels (large negative eigenvalues or large numbers of negative eigenvalues).
We show experiments showing that our algorithm KSVM outperforms all previously proposed approaches to deal with indefinite
matrices in SVM-like kernel methods.

Index Terms—dissimilarity, Kreı̆n spaces, SVM, indefinite kernel, stabilization problem, classification
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1 INTRODUCTION

T RAINING a support vector machine (SVM) with
indefinite kernel matrices has been a regular sub-

ject of interest since the beginning of SVM. While
theoretically not allowed, matrices that are not posi-
tive definite are used in several application fields, and
some toolboxes even include specific treatments to tol-
erate such matrices. There are also several heuristics
that are applied as pre-treatment to cure the indefinite
matrices, and more recently, even dedicated methods.
In this paper, we consider the signal to truly belong
in indefinite space, and in contrast to related work
we do not seek to distort the kernel. Taking this
point of view [1] proposed a stabilization approach
when faced with an indefinite kernel, instead of the
standard minimization approach.

However the proposed solution was not directly
applicable to the SVM, and there has been several
different proposals for solving the SVM problem with
indefinite kernels in the subsequent years. Unfortu-
nately none of the proposed approaches address the
theoretically desirable stabilization problem. Recently
[2] proposed a solution to stabilization problem for
the SVM, using the eigen-decomposition of the kernel
matrix. This paper extends [2], surveying existing
approaches for indefinite kernels, reviewing the the-
oretical arguments in favor of stabilization, carefully
relating the stabilization problem to the more stan-
dard minimization problem, illustrating the different
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approaches to indefinite kernels with simulations,
and providing empirical experiments to evaluate the
proposed algorithm.

1.1 Why indefinite kernels with SVMs?
One could consider only the theoretical aspects of
kernels and dismiss the need for any further research
into indefinite kernels. There exists a lot of efficient
positive definite kernels and there is no theoretical
proof that, for instance, the tanh kernel would be
better than the Gaussian RBF kernel. However many
applications have similarities that cannot be expressed
as a positive definite kernel [3]. We illustrate this with
two recent examples. The first is a human evaluation
of music similarity, like for the dataset MIREX07 [4]
used in this paper. To build the similarity matrix,
each human evaluator is asked to judge how similar
2 songs are, using a scale from 0 to 10. The average
evaluation for each pair of songs is reported in the
similarity matrix. In this example, there is no reason to
obtain a positive definite matrix. The second example
deals with graph data, that can be extracted from
3d shapes. Computing a graph kernel is a complex
task and it is not easy to guarantee that the result
will be positive definite. In [5], the author propose
a positive definite matching kernel that is presented
as an approximation of a previous indefinite version.
While the positive version seems to be efficient, who
can claim that it is more efficient than the original
indefinite one without having a convincing solver able
to deal with it to actually compare those kernels?
We propose exactly such a solver by expressing the
stabilization problem of SVM with indefinite kernels
as a standard optimization problem.

1.2 Existing approaches
When dealing with indefinite kernel matrices, there
are two main possibilities: either the kernel matrix is
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changed (via spectrum modification) so that a regular
solver can be used, or the solver deals with indefinite
matrices directly.

1.2.1 Spectrum modification
We describe here several modifications that can be
applied to an indefinite kernel matrix K in order
convert it to a positive semidefinite matrix [6], [7]:
• clip: the negative part is simply removed (nega-

tive eigenvalues cut to 0)
• shift: the complete spectrum is shifted until the

least eigenvalue is 0
• flip: the absolute value of the spectrum is used

(the negative part becomes positive)
• square: eigenvalues are squared, which is equiv-

alent to using KK> instead of K.
Once the matrix is positive definite, a convex opti-
mization algorithm can be used to solve the resulting
SVM. However the solution is not based on the true
kernel which is a problem for testing new examples.

1.2.2 Solvers accepting indefinite matrices
Several methods are able to deal directly with indefi-
nite matrices. Here we distinguish two kind of solvers:
those based on feature-space embedding and those
that directly solve the indefinite problem. Feature-
space embedding means that each kernel row is con-
sidered as an example in the feature space. Hence the
indefiniteness is not an issue anymore. Here is a list of
feature-space embedding methods that can be found
in literature to deal with indefinite kernel matrices:
• LP-SVM: proposed in [8], the idea is to use

linear programming to solve the SVM problem,
since it does not require positive definiteness. [9]
proposed a generalised SVM which als includes
a linear programming version.

• P-SVM: proposed in [10], originally to deal with
dyadic data. This solver is based on the usage
of KK>, which is a direct way to consider the
kernel rows as features.

• RVM: proposed in [11], based on Bayesian infer-
ence, it also uses KK>.

If not using feature-space embedding, the solver has
to actually deal with the indefiniteness:
• non-convex: the objective function of the problem

being non-convex due to the indefinite kernel
matrix, it can seem natural to try to minimize it
using non-convex optimization. This is done in
libSVM solver [12] but is also can be done using
difference of convex (DC) techniques [13].

• spectrum: there are also methods specifically de-
signed to solve SVM with indefinite kernel, such
as IndefiniteSVM [14]–[16]. Here the idea is to do
some spectrum modification (clip) while solving.
A related approach is IKFD [17], which performs
Fisher Discriminant Analysis with the absolute
value of the spectrum (flip). Since both these

approaches use spectrum modification heuristics,
the problem is to treat the test examples in a
consistent and theoretically founded fashion.

• approximate: instead of choosing a particular
way to convert the indefinite kernel, some au-
thors have proposed simultaneously optimising
the classifier while finding the best positive
semidefinite kernel [15], [18], [19]. These ap-
proaches consider the negative parts of the spec-
trum as noise and aim to correct for it. A further
discussion about computational complexity is in
section 4.

• stabilization: as established in [1], [2] the SVM
problem with indefinite kernels are defined in
Kreı̆n spaces and the solution of the SVM in
Kreı̆n spaces is the one which stabilizes the cost
function. The main problem is then to define
what this solution is. This is the point we address
in this paper and this solution is provided by the
KSVM solver (Kreı̆n Support Vector Machine).

There are other related approaches for regression [20]
and multiple kernel learning [15], [21] with indefinite
kernels.

1.3 Contributions
We consider the problem of training an SVM with an
indefinite kernel. The present paper is built on [1],
in which the stabilization idea is proposed. However
stabilization is a non-standard way to express an
optimization problem. With KSVM we bring a well
founded and practical solution to the stabilization
setting applied to SVM. We show the equivalence
between the stabilization problem and a standard
convex optimization problem. It turns out that solving
the stabilization system (detailed in section 2) can
be achieved using a popular heuristic based on the
kernel’s spectrum modification. On top of providing a
solid foundation to spectrum modification, solving the
stabilization problem also provides a straight forward
way to obtain the solution in the original Kreı̆n space.
This allows to classify any new point without having
to transform it.

We use several illustrative examples to tease apart
the difference between the various approaches for
indefinite kernels, and include an open source im-
plementation of KSVM. We also demonstrate, in our
fully reproducible experiments on empirical data, that
KSVM efficiently achieves good results. Overall, not
only do we propose in this paper a full study of the
KSVM, but we also intend to convince the reader that
understanding the impact of working in a Kreı̆n space
is the key to solving learning problems with indefinite
kernels.

2 SVM IN KREĬN SPACES

In this section we review the background on Kreı̆n
spaces and establish the stabilization system that has
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to be solved to train an SVM in a Kreı̆n space. We ex-
pand upon the theoretical properties of Reproducing
Kernel Kreı̆n Spaces as first presented to the machine
learning community in [1].

2.1 SVM as a projection
The success of SVMs in numerous application areas
has been made possible thanks to the existence of
stable, efficient and accurate numerical algorithms.
This is due to the fact that the problem of margin
maximization in a Reproducing Kernel Hilbert Space
(RKHS) can be cast as a quadratic program. We in-
troduce here a slightly non-standard formulation of
the SVM which is equivalent to the standard C-SVM.
Let xi ∈ X , i ∈ {1, . . . , `} be ` training points in the
input space X , along with their label yi ∈ {−1, 1}
representing the class each point belongs to in a
classification problem. The input space X is often
considered to be IRd, but can be any space due to
the kernel trick. For a given positive C, SVM is the
minimum of the following regularized empirical risk
functional

JC(f, b) =
1
2‖f‖

2
H+C

∑̀
i=1

max
(
0, 1−yi(f(xi)+b)

)
. (1)

Using its solution (f?C , b
?
C) := argmin JC(f, b) we can

introduce τ =
∑`
i=1 max

(
0, 1 − yi(f?C(xi) + b?C)

)
and

the associated convex quadratic program (QP)
min

f∈H,b∈IR
1
2‖f‖

2
H

s.t.
∑̀
i=1

max
(
0, 1− yi(f(xi) + b)

)
≤ τ .

(2)

This QP admits as unique solution (f?τ , b
?
τ , λ

?
τ ) where

λ?τ denotes the value of the Lagrange multiplier of
the constraint at the optimum. It turns out that these
two problems (1) and (2) are equivalent in the sense
that, for well chosen C and τ , they provide the same
unique solution (f?C , b

?
C) = (f?τ , b

?
τ ). Indeed, JC is

convex as the sum of two convex functionals and
by setting C = λ?τ , its regularization parameter can
be interpreted as the optimal Lagrange multiplier
of (2), so that the solution of (1) verifies the KKT
conditions of (2) and the solution of (2) verifies, thanks
to its stationary condition, the optimality condition for
being a solution of (1).

The QP (2) can be also seen as the problem of re-
trieving the orthogonal projection of the null function
in H onto the convex feasible set. This formulation al-
lows us to define the so-called "variational inequality"
characterization of projection (equivalent in this case
to the optimality condition for f being the solution of
problem (2)). The bias b play a particular role since
it is not explicitly involved in the projection. A way
to treat it, and thus to preserve the uniqueness of the
solution, is to include an additional equation in the
definition of the convex set we are projected on. This

equation is the optimality condition regarding b that
is 0 ∈ ∂bH(f, b) where ∂b denote the sub differential
with respect to b and

H(f, b) =
∑̀
i=1

max
(
0, 1− yi(f(xi) + b)

)
Definition 2.1 (SVM as a projection): Let H be a

RKHS. For a given set S,

S =
{
f ∈ H, b ∈ IR

∣∣ H(f, b) ≤ τ and 0 ∈ ∂bH(f, b)},

the SVM is the unique (f, b) ∈ S such that

∀(g, a) ∈ S, 〈f, f − g〉H ≤ 0.

Since it does not involve any norm, this way of
defining SVM using a projection regularization princi-
ple1 can be used as it is when dealing with indefinite
kernels in Kreı̆n spaces. However, as we will see in
the following section, this will lead to a problem
of finding a stationary point instead of a minimum.
We call the problem of finding a stationary point
“stabilization”.

2.2 A quadratic program to solve SVM in Kreı̆n
spaces using stabilization
In this section, Reproducing Kernel Kreı̆n Spaces
(RKKS) are briefly introduced to allow the definition
of SVMs in this framework as a projection. Then this
definition is recast as a stabilization problem. It was
shown in [1] that from the function space point of
view, positive semi-definiteness is not a requirement,
and in fact the representer theorem is also valid for
RKKS.

2.2.1 Reproducing Kernel Kreı̆n Space
Kreı̆n spaces are indefinite inner product spaces en-
dowed with a Hilbertian topology. The key difference
from Hilbert spaces is that the positiveness axiom is
no longer required for Kreı̆n Spaces.

Definition 2.2 (Inner Product, [23]): Let K be a vector
space on the scalar field. An inner product 〈., .〉K on
K is a bilinear form where for all f, g, h ∈ K, α ∈ IR :

• 〈f, g〉K = 〈g, f〉K
• 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K
• 〈f, g〉K = 0, ∀g ∈ K =⇒ f = 0

Definition 2.3 (Kreı̆n space, [24]): An inner product
space (K, 〈., .〉K) is a Kreı̆n space if there exists two
Hilbert spaces H+,H− spanning K, with f+ ∈ H+

and f− ∈ H−, such that
• ∀f ∈ K, f = f+ + f−,
• ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H−

If H+ and H− are RKHS, K is a reproducing kernel
Kreı̆n spaces (RKKS). In this case the uniqueness

1. Note that projection is a well known regularization mechanism
(see for instance [22] and related references), allowing to choose a
unique and stable solution from the feasible set S.
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of the functional decomposition (the nature of the
RKHSsH+ andH−) is not guaranteed. In [1], Proposi-
tion 6, the reproducing property is shown: in a RKKS
K, there is a unique symmetric kernel k(x, x′) with
k(x, .) ∈ K such that the reproducing property holds
(for all f ∈ K, f(x) = 〈f, k(x, .)〉K) and k = k+ − k−
where k+ and k− are the reproducing kernels of the
RKHSs H+ and H−. Furthermore, for any symmetric
nonpositive kernel k that can be decomposed as the
difference of two positive kernels k+ and k−, a RKKS
can be associated to it.

2.2.2 SVM in RKKS

The definition of a proper SVM in RKKS requires an
adaptation from the classical SVM in RKHS given
by (2) since the norm ‖f‖ is not defined in Kreı̆n
spaces. As previously remarked, the minimization of
a norm can be seen as a projection. This interpretation
in terms of projection still holds in Kreı̆n spaces and
can be used as a regularization mechanism [25], [26].
This allows to define SVM in RKKS (as it can be in
Hilbert spaces) as the orthogonal projection of the null
element onto

S =
{
f ∈ K, b ∈ IR

∣∣ H(f, b) ≤ τ and 0 ∈ ∂bH(f, b)}

Definition 2.4 (SVM in a RKKS): Let K be a RKKS.
For a given set S, the SVM is the unique (f, b) ∈ S
such that

∀g ∈ S, 〈f, f − g〉K ≤ 0.

As claimed in [25], section 2.4 p 40, in Hilbert space,
projections extremize certain quadratic forms while
in Kreı̆n spaces we can in general only assert that
projections stabilize such quadratic form. In our case,
this quadratic form is 〈f, f〉K, leading to the following
formulation of indefinite SVM in RKKS

stab
f∈K,b∈IR

1
2 〈f, f〉K

s.t.
∑̀
i=1

max
(
0, 1− yi(f(xi) + b)

)
≤ τ .

(3)

where stab means stabilize.
The literature on convex optimization [27], [28] has

focused on the solution of minimization or maximiza-
tion problems. But the optimization problem required
for indefinite SVMs involves a stationary point condi-
tion, which has not received much study. Interestingly,
all three problems (minimization, maximization and
stabilization) have the same first order conditions of
optimality.

2.2.3 An illustrative example

To illustrate this idea of projection in a Kreı̆n space
we propose to consider the following cost function
J(w1, w2) = w2

1 − w2
2 (that can be seen as an inner

(0,0)

Sm

SMSp

 

 

feasible set
neutral cone
iso cost line

Fig. 1. The three solutions of the illustrative example.

product in a Kreı̆n space) together with the feasible
set

S =

(w1, w2) |
w1 ≤ 2
w2 ≤ 3

w1 +
1
2w2 ≥ 1

 .

Regardless on whether we want to maximize, min-
imize or stabilize the cost function J(w1, w2), the
Lagrangian of the problem is the same, namely:

L(w1, w2, λ1, λ2, λ3) = w2
1 − w2

2+
λ1(w1 − 2) + λ2(w2 − 3)− λ3(w1 +

1
2w2 − 1).

Thus, a stationary point of this problem satisfies

∇wL(w1, w2, λ1, λ2, λ3) = 0
⇔{

−2w1 + λ1 − λ3 = 0
−2w2 + λ2 − 1

2λ3 = 0.

The associated KKT conditions admit three solutions
represented figure 1. The first solution minimizing
J(w1, w2) is Sm = (0, 3), the second solution max-
imizing J(w1, w2) is SM = (2, 0) while the third
solution Sp = ( 43 ,

−2
3 ) is the Kreı̆n space projection

of (0, 0) onto the feasible set. Indeed, ∀g = (g1, g2) ∈
S, 〈Sp, Sp − g〉K = 4

3 (
4
3 − g1) − −23 (−23 − g2) ≤ 0

illustrating the fact that the projection of (0, 0) onto
the feasible set is a stationary point of the Lagrangian.

2.3 The dual quadratic program using stabiliza-
tion
2.3.1 A Saddle Point
In the following we need to transform the stationary
point search into a min-max search. This is easy to
write if the stationary point is a saddle point, a fact
we prove below.

Proposition 2.1: The stationary point is a saddle
point.
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Proof: To show our point, we follow [25, section
6.3.1]. Let consider the quadratic cost function

I(a, b) =
[
a> b>

] [ A B
B> C

] [
a
b

]
(4)

where a and b are vectors and A,B,C are given ma-
trices with A and C symmetric. If the middle matrix
is indefinite, the solution of this quadratic problem
is a stationary point. Let’s say that one wants to
minimize I(a, b) through the choice of a and maximize
it through the choice of b, then there are two different
strategies that can be applied: either the max-min
problem (maxbmina I(a, b)) or the min-max problem
(minamaxb I(a, b)). As stated in [25, eq. 6.3.9], the con-
dition that the min-max and max-min solutions exist
simultaneously is called the saddle point condition,
which is A is positive definite and C is negative definite.

Now we show that our cost function I1(f+, f−) can
be written such that it is possible to identify A and C
and deduce that the stationary point is a saddle point.
Let

I1(f+, f−) =
1
2 〈f+, f+〉H+ − 1

2 〈f−, f−〉H− . (5)

From the Kreı̆n space decomposition we have

f(.) = f+(.)− f−(.)

with
f+(.) =

∑
i

βiyik+(xi, .)

and
f−(.) =

∑
i

βiyik−(xi, .).

Hence eq. (5) can be expressed as

I1(β) =
1

2
β>G+β −

1

2
β>G−β,

with G+(i, j) = yiyjk+(xi, xj) and G−(i, j) =
yiyjk−(xi, xj), so G = G+ − G−. We use the eigen-
decomposition of the indefinite kernel matrix G =
UDU> where U is the orthonormal column eigen-
vector matrix and D the diagonal eigenvalue matrix.
Since G is indefinite, D contains both positive and
negative eigenvalues. Let note D+ (resp. D−) the
diagonal submatrix of D such that it contains all
and only positive (resp. negative) eigenvalues, and
U+ and U− the submatrices of U consisting of the
corresponding eigenvectors. Then G+ = U+D+U

>
+

and G− = U−D−U
>
− . Moreover, we denote a =

U>β = [b+; b−] = [U>−β;U
>
+ β].

I1(β) =
1

2
β>U+D+U

>
+ β −

1

2
β>U−D−U

>
−β

I1(b+, b−) =
1

2
b>+D+b+ −

1

2
b>−D−b−

I1(b+, b−) =
[
b>+ b>−

] [ D+ 0
0 D−

] [
b+
b−

]
(6)

From this we can identify with eq.(4) and see by defi-
nition that A = D+ is positive definite and C = D− is

negative definite. This shows that the stationary point
of our problem is a saddle point.

Since the stationary point we are looking for is a
saddle point, we can write it as a min-max or as a
max-min problem, which we use in the following.

2.3.2 An equivalent loss function

To characterize the solutions of indefinite SVM in
RKKS given by (3), it would be useful to define the
stabilization problem as a unique loss function J(f),
that would be composed of J1(f), the term to be sta-
bilized and J2(f), the good classification constraints.
However, going from (3) to J(f) is not a standard
manipulation in the case of stabilization, in particular
when regarding the sign of J2(f). In the following,
we decompose the stabilization problem into a min-
max problem (see section 2.3.1). J(f) becomes then
J(f+, f−). The problem is then minimized according
to f+ and maximized according to f−.

min
f+,b,ξ

max
f−,b,ξ

1
2 〈f+, f+〉H+

− 1
2 〈f−, f−〉H− + C

∑̀
i=1

ξi

s.t. yi(f+(xi)− f−(xi) + b) ≥ 1− ξi
and ξi ≥ 0 ∀i ∈ [1..`]

(7)
Step 1: Minimization according to f+: First we

fix f− in eq. (7) and write the equivalent loss function
for f+. In that case, we only have a standard mini-
mization problem.

min
f+,b,ξ

1
2 〈f+, f+〉H+

+ C
∑̀
i=1

ξi

s.t. yi(f+(xi)− f−(xi) + b) ≥ 1− ξi ∀i ∈ [1..`]
and ξi ≥ 0 ∀i ∈ [1..`]

(8)
Using the KKT conditions, we can write the associ-

ated loss function as:

Jp(f+, b) =
1
2 〈f+, f+〉H+ +

∑̀
i=1

βi

−
∑̀
i=1

βi(yi(f+(xi)− f−(xi) + b)

with 0 ≤ βi ≤ C

(9)

Step 2: Maximization according to f−: First we
fix f+ in eq. (7) and write the equivalent loss function
for f−. In that case, we only have a standard maxi-
mization problem.

min
f−,b,ξ

− 1
2 〈f−, f−〉H− + C

∑̀
i=1

ξi

s.t. yi(f+(xi)− f−(xi) + b) ≥ 1− ξi ∀i ∈ [1..`]
and ξi ≥ 0 ∀i ∈ [1..`]

(10)
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Using the KKT conditions, we can write the associ-
ated loss function as:

Jn(f−, b) = − 1
2 〈f−, f−〉H− −

∑̀
i=1

γi

+
∑̀
i=1

γi(yi(f+(xi)− f−(xi) + b)

with 0 ≤ γi ≤ C

(11)

Step 3: Loss function associated to the min-max
problem: We now define Jd from (9) and (11) as
follows:

Jd(f+, f−, b) = Jp(f+, b) + Jn(f−, b)

=
1

2
〈f+, f+〉H+

− 1

2
〈f−, f−〉H−

+
∑̀
i=1

βi −
∑̀
i=1

γi

−
∑̀
i=1

βi(yi(f+(xi)− f−(xi) + b)

+
∑̀
i=1

γi(yi(f+(xi)− f−(xi) + b)

(12)
and claim that (12) is the loss function associated to
(7). We introduce αi = βi − γi and we observe the
possible values of αi in table (1):

βi = 0 0 < βi < C βi = C
γi = 0 0 0 < αi < C αi = C

0 < γi < C −C < αi < 0 −C < αi < C 0 < αi < C
γi = C αi = −C −C < αi < 0 0

TABLE 1
Possible values of αi

The loss function (12) is then written as:

Jd(f+, f−, b) =
1

2
〈f+, f+〉H+ −

1

2
〈f−, f−〉H−

+
∑̀
i=1

αi

−
∑̀
i=1

αi(yi(f+(xi)− f−(xi) + b)

(13)
Step 4: Back to f ∈ K: From eq. (13) it is easy to

write the loss function associated to the stabilization
problem for which we want to write the representer
theorem:

J(f, b) =
1

2
〈f, f〉K +

∑̀
i=1

αi

−
∑̀
i=1

αi(yi(f(xi) + b))

(14)

2.3.3 The representer theorem for SVM in RKKS
The stationnary point of J(f, b) is given as usual by
annihilating its gradients.


∇fJ(f, b) = f(.)−

∑̀
i=1

αiyik(xi, .) = 0

∇bJ(f, b) = −
∑̀
i=1

αiyi = 0

(15)

This results in the following:


f(.) =

∑̀
i=1

αiyik(xi, .)

with
∑̀
i=1

αiyi = 0

and −C ≤ αi ≤ C ∀i ∈ [1..`]

(16)

2.3.4 Dual stabilization problem
To obtain the dual stabilization problem, we substitute
eq.(16) in the loss function J :

J(f, b) = −1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjk(xi, xj) +
∑̀
i=1

αi (17)

and we deduce the dual stabilization quadratic prob-
lem:

stab
α

−1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjk(xi, xj) +
∑̀
i=1

αi

with
∑̀
i=1

αiyi = 0

and −C ≤ αi ≤ C ∀i ∈ [1..`]

(18)

In the following section, we derive an other path
to go from the primal stabilization problem (3) to the
dual one (18), using much more standard tools. The
reason why we propose two approaches is two fold:
on the one hand it permits to confirm our proposition
for the dual of a stabilization problem. On the other
hand, the second path given in section 3 provides the
equations used in the algorithm KSVM, solving the
SVM in Kreı̆n spaces.

3 ALTERNATIVE PATH FROM PRIMAL TO
DUAL STABILIZATION PROBLEM

The algorithm (1) presented in section 4, called KSVM,
is based on the equivalence that is established in
this section. We show that the stabilization problem
(3) can be written as a minimization problem using
a semi-definite kernel matrix. We give a series of
relations between the stabilization variables and the
minimization ones and we also use them to write the
dual of our stabilization problem. Overall we consider
4 distinct optimization problems and we establish
their equivalence in terms of optimality conditions:
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1) Primal stabilization problem (Equation (3)): we
proved in section 2.3.1 that the stationary point
is a saddle point, which means that the problem
can can transformed into a min-max or a max-
min problem indifferently. This allows to go to
the second step.

2) Primal minimization problem (Equation (19)):
this standard problem leads directly to the next
one via convex duality.

3) Dual maximization problem (Equation (20)): we
define in section 3.3.1 a matrix transition P that
is used to propose the final problem.

4) Dual stabilization problem (Equation (24))

Note that in the following, we use β for coefficients
in the primal, α for coefficients in the dual RKKS and
α̃ for coefficients in the dual RKHS.

3.1 Equivalence between Stabilization and Mini-
mization

We prove that the dual SVM maximization prob-
lem with an appropriately converted kernel matrix
is equivalent to the primal stabilization problem. We
obtain this by considering the decomposition of Kreı̆n
spaces into Hilbert spaces, resulting in a standard
convex minimization. We first write equation (3) ac-
cording to f+ and f−, since we have fK = f+ + f−
and 〈f, f〉K = 〈f+, f+〉H+ − 〈f−, f−〉H− .


min

f+∈H+,b∈IR
max
f−∈H−

1
2 〈f+, f+〉H+ − 1

2 〈f−, f−〉H−

s.t.
∑̀
i=1

max
(
0, 1− yi(f+(xi) + f−(xi) + b)

)
≤ τ

From here, is it possible to change the maximization
part into a minimization as follows:

min
f+∈H+,f−∈H−,b∈IR

1
2 〈f+, f+〉H+ + 1

2 〈f−, f−〉H−

s.t.
∑̀
i=1

max
(
0, 1− yi(f+(xi) + f−(xi) + b)

)
≤ τ

To establish the final minimization system, one needs
to note that from f+ and f−, we can build a positive
Hilbert space, denoted K̃ such as

f̃ = f++f− and 〈f̃ , f̃〉K̃ = 〈f+, f+〉H++〈f−, f−〉H− .

Using this notation, we obtain
min

f̃∈K̃,b∈IR

1
2 〈f̃ , f̃〉K̃

s.t.
∑̀
i=1

max
(
0, 1− yi(f̃(xi) + b)

)
≤ τ

(19)
which is the SVM formulation given in equation (2).

3.2 Dual Optimization Problem
By using standard methods of Lagrange duality, the
dual optimization problem corresponding to Equa-
tion (19) is given by

max
α̃

− 1
2 α̃
>G̃α̃+ α̃>1

subject to α̃>y = 0
and 0 ≤ α̃i ≤ C ∀i ∈ [1..`]

(20)

where G̃ = G+ +G−.

3.3 An Equivalent stabilization Problem in its
Dual Form
To write the dual stabilization problem, we define
projection operators and transition matrices that are
used to relate α in the dual RKKS and α̃ in the dual
RKHS.

3.3.1 Transition matrix between α and α̃
Definition 3.1 (Fundamental decomposition of K): [25,

Definition 2.2.1, remarks]. We define two projection
operators P+ and P− such that

P+K = K+ and P−K = K−

So for every x ∈ K we can write

x = x+ + x−, where

x+ = P+x ∈ K+ and x− = P−x ∈ K−.

Proposition 3.1: Matrices P+ and P− are given by
the eigen-decomposition of the matrix G.

Proof: Using the same eigen-decomposition as for
eq. (6), G = UDU>, we can write

G = U+D+U
>
+ + U−D−U

>
− = G+ −G−

G+ = U+D+U
>
+ = UD̃+U

> with D̃+ =

[
D+ 0
0 0

]
G+ = US+DU

> with S+ =

[
I 0
0 0

]
G+ = US+U

>UDU> = US+U
>G = U+U

>
+G = P+G

The same reasoning holds for G− and P− = −U−U>−
and G = P+G+ P−G.

Then the corresponding kernel in the RKHS is
written as G̃ = (P+ − P−)G. We note P the transition
matrix such that P = P+ − P− = USU> with

S =

[
I 0
0 −I

]
Let’s decompose α according to P+ and P− and

deduce the decomposition of α̃:

α = P+α+ P−α = α+ + α−
α̃ = P+α− P−α = α+ − α−
= Pα

Note that U being orthogonal, we also have α = Pα̃.
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3.3.2 From dual maximization to dual stabilization
We now use the relation between α and α̃ in problem
3, eq (20).{

max
α

− 1
2α
>PG̃Pα+ α>P1− bα>Py

with 0 ≤ (Pα)i ≤ C ∀i ∈ [1..`]
(21)

It is easy to check that PG̃P = G̃. Moreover, we de-
compose α and note that P+P = P+ and P−P = P−.
We also use P+GP+ = G+ and P−GP− = G−:


max
α+,α−

− 1
2α
>
+G+α+ + 1

2α
>
−G−α− + α>+1− α>−1

−µ(α+ − α−)>y
with 0 ≤ (α+ − α−)i ≤ C ∀i ∈ [1..`]

(22)
The next step consists in changing the system such

that we maximize according to α+ and minimize
according to α−:

max
α+

min
α−

− 1
2α
>
+G+α+ − 1

2α
>
−G−α− + α>+1+ α>−1

−µ(α+ + α−)
>y

with 0 ≤ α+i ≤ C+ ∀i ∈ [1..`]
and −C− ≤ α−i ≤ 0 ∀i ∈ [1..`]
and C+ + C− = C

(23)
As previously, one can show that the stationary point
is a saddle point, so we finally write the system as a
stabilization:{

stab
α

− 1
2α
>Gα+ α1− µα>y

and −C− ≤ αi ≤ C+ ∀i ∈ [1..`]
(24)

System (24) is similar to the dual (18), up to con-
stants.

4 PRACTICAL ALGORITHM: KSVM AND
KSVM-L
The resulting algorithm, that computes the solution
of the stabilization problem by solving the equiv-
alent SVM dual minimization problem is given by
algorithm (1) and named KSVM (for Kreı̆n SVM).
We denote G the kernel matrix such that G(i, j) =
yiyjk(xi, xj), and describe our proposed algorithm in
Algorithm (1).

Algorithm 1 SVM solver for indefinite kernels in
Kreı̆n spaces (KSVM)
Require: y, C and G

[U,D] = EigenDecomposition(G)
G̃ = USDU> with S=sign(D)
[α̃,b] = SvmSolver(y,G̃,C)
α = USU>α̃
return α,b

This solver produces an exact solution for the stabi-
lization problem. Its main weakness is that it requires
the user to pre-compute the whole kernel matrix

and to decompose it into eigenvectors/eigenvalues.
The other point to mention is that the solution α is
not sparse. It can be seen as a generalization of the
semi-definite case, in the sense that filling it with
a positive definite kernel will produce the standard
SVM solution.

Its main advantage is its simplicity, it will work
with any SVM solver, and it can easily be extended to
other kind of tasks or methods. Furthermore to reduce
computation time, we can use partial decomposition
and take only the largest eigenvalues (and associated
eigenvectors) such that we keep more than, for in-
stance, 95% of the kernel information [29]–[32]. This
low rank adaptation is referred as KSVM-L.

Note that KSVM is in practice quite similar to the
indefinite SVM proposed in [15], [18], even though
the reasoning is very different: in [15], [18], the idea
is to learn a semi-definite positive kernel matrix from
the initial indefinite matrix during training. This leads
to a convex conic optimization problem, which has 2
major drawbacks: it is large and it produces solutions
that over-fit. This is the reason why the authors
propose to restrict the possible surrogate matrices to
be a spectrum modification of the original matrix.
This spectrum modification is learned using a second-
order cone program [18] and a bundle method [15]
so the solution would not necessarily be the same
as KSVM’s. During test time, [18] solves a QCQP to
transform the test samples with the same spectrum
modification as the training samples. Concerning the
test part, it differs from KSVM only in the fact that
they use the spectrum modification information to
transform the test samples while we use the same
information to get the solution back into the original
Kreı̆n space. In addition, since KSVM can leverage on
existing efficient SVM solvers, it is computationally
much faster than indefinite SVM that needs to solve
a second order cone program.

5 EXPERIMENTS

This part contains a series of experiments that show
that our approach leads to better results than the
previous approaches. In the first subsection, we pro-
pose a simple visualization of the solutions given by
stabilization and minimization on a 2d problem with
a linear indefinite kernel. The solutions provided by
various algorithms on the checkerboard data are also
presented. The next subsection presents an extensive
experimental study on various datasets in order to
compare the performance of each of the previous ap-
proaches to deal with indefinite kernels (methods that
require to modify test data are excluded). Finally we
compare the experimental complexity of the different
solvers.



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2015.2477830, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TPAMI 9

5.1 Solvers

We perform an experimental comparison of the fol-
lowing methods 2:
• KSVM/KSVM-L ([2] and this paper), P-SVM [10],

[34], Cut, Shift and Flip (usual heuristics).
• IndefiniteSVM is the Matlab implementation pro-

vided by the authors [15]
• libSVM [12] provides a Matlab connection
• RVM is the Matlab implementation provided by

the authors [35]
• LP-SVM is based on CPLEX [36]

5.2 Illustrations

The intuition behind the stabilization problem is not
straight forward. It requires us to think about the
meaning of the negative part of the space. A very
interesting viewpoint is introduced in [3], arguing
that (in the context of feature discovery), the negative
eigenvalues can code for relevant structure in the data. One
of the striking examples is on the MNIST database: the
projection of digits onto the first 2 positive eigendirec-
tions gathers them according to their shape (i.e. their
labels), while the projection onto the 2 last negative
eigendirections gathers them according to the stroke
weight (which is not relevant for classification but is
still relevant information). This work clearly shows
the interest of keeping the negative subspace infor-
mation.

Stabilization vs Minimization in 2D

The goal of this experiment is to provide a visual hint
on the difference between minimizing and stabilizing
indefinite SVM. The space is 2d, and the kernel is
linear yet indefinite:

k(x, y) = x1y1 − x2y2 (25)

Figure 2 shows the minimization decision function
(in pink) and the stabilization decision function (in
green). We observe that both have a zero training
error. However the stabilization decision function has
a larger margin.

To go a little further in this example, the same
setting was run two hundred times, with randomly
generated training set, of random size (between 10
and 100 for each class). For each couple of classifier
(minimizer and stabilizer), margins (in the Krein space
- MK - and in the Euclidean space - ME) and cost
function value (CO) at the optimum are computed.
On top of that, we count the number of times that
the solutions are very close (same margin value, same
optimal cost value). We report in table 2 the average

2. The pure Matlab solvers corresponding to KSVM, KSVM-L,
P-SVM and the spectrum modification methods, are implemnted
using the SimpleSVM Toolbox [33] and are available at
http://gaelle.loosli.fr/research/.

MK ME CO (variance)
+42.40 % +131.11 % +32.13 (± 42.09) %

TABLE 2
Average gain of stabilization over minimization in

terms of margins, along with the average difference of
cost function optimal value. In 14.5% of the tested
datasets, the margins are similar for both solvers.

results presented as the gain of stabilization over
minimization:

MK = 100×mean((MStab
K −MMin

K )/MMin
K )

ME = 100×mean((MStab
K −MMin

K )/MMin
K )

CO = 100×mean((CStabO − CMin
O )/CMin

O )

The results illustrate that margins are significantly
larger, in both Euclidean and Kreı̆n spaces, when
stabilizing, as shown in figure 2. The margins result-
ing from stabilization are always larger than when
performing minimization, even though on average the
stabilization solution has a higher cost function value.
This shows that lower cost functions do not correlate
with larger margins, indicating that minimization is
not the right objective. Furthermore, in 17% of the
tests the stabilization solution is lower than the min-
imization solution, demonstrating that the minimiza-
tion procedure is stuck in a local minimum that is not
globally optimal.

Margin maximization and Kreı̆n space
In Kreı̆n spaces, the numerical margin remains well
defined. However, the notion of geometric margin is
not yet clear. Indeed, in the usual Euclidean frame-
work, the geometric margin is defined from the as-
sociated norm, no longer available in non-Euclidean
geometry (indefinite space).

More precisely, in the positive linear separable case,
the margin maximization problem can be written as
follows 

max
v,a

m

s.t. min
i∈[1,`]

|〈v, x〉+ a|

〈v, v〉
1
2

≥ m

where (v, a) defines the decision function. Defining
w = v

m
√
〈v,v〉

and b = a

m
√
〈v,v〉

, we can rewrite this
system  max

w,b

1

〈w,w〉
s.t. yi

(
〈w, xi〉+ b

)
≥ 1 ∀i

And then this maximization problem is converted to
the equivalent minimization problem on 〈w,w〉.

Obviously, going from the margin maximization to
the scalar product minimization relies several times
on the fact that the scalar products are positive. It is
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Fig. 2. Illustration of the solutions provided by mini-
mizing or stabilizing the cost function of a 2d indefinite
problem with a linear kernel.

easy to see that both the variable change from v to w
and the problem conversion from 1

〈w,w〉 to 〈w,w〉 face
signs issues which prevent from writting max or min
problems. This enlights the fact that minimization in
the indefinite case will not provide a large margin.

Now concerning the indifinite case, stabilization
maximizes the margin in Kreı̆n space. The difficulty
is that it is in general not possible to reduce a non-
Euclidean geometry into Euclidean geometry, and
therefore it is not possible to reduce the margin in
Kreı̆n space into a margin in Hilbert space.

Results on checkerboards

Here we show the behaviors of the learning methods
on a checkerboard patterned dataset. Figures 3 and
4 give an illustration of each considered method’s
result. For the classical heuristics Cut, Shift and Flip
(which consists in modifying the kernel spectrum,
respectively in removing negative eigenvalues, in-
creasing those until they are all positive and taking
the absolute value), we present the decision function
with and without including the test set in the kernel
modification. The test set is composed of a regular
grid (41 × 41) on all the plotted space, those points
being used to actually plot the decision boundaries.

For figure 3, 96 training points are used, while 400
training points are used for figure 4. Visually, it is
quite easy to observe that some methods have diffi-
culties to learn the data shape: IndefiniteSVM, P-SVM,
libSVM, Cut and Shift (with or without transforming
the test set actually). Although RVM fails regularly
for the small dataset case it behaves well otherwise.
Flip with test set transformation gives results quite
similar to KSVM. LP-SVM and KSVM are visually
comparable.

Fig. 3. Training 2D checkers on 96 training points with
different methods. The least eigenvalue of the tanh
kernel is −13.11.

5.3 Stabilization for indefinite kernels and dissim-
ilarity kernels
This large experiment is meant to give an overview
of the ability of KSVM to solve open problems in
a large variety of application fields. Indeed, it is
quite easy to find datasets leading to indefinite kernel
matrices. From biological field (with graph kernels,
string kernels...) to vision, passing by human based
similarities (for instance when humans are asked to
evaluate something they ear), indefiniteness arises
naturally in many situations. From other interesting
studies on learning with indefinite kernels (for in-
stance [37]–[39]), we have collected 14 datasets, plus
2 UCI classics. Table 3 gives a description of each
dataset.

Experimental setting
For each dataset, we have run 20 times the following
procedure: a random split to produce a training and
a testing set, a 5-fold cross validation to tune each
parameter (the number of parameters depending on
the method) on the training set, and the evaluation on
the testing set.
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Fig. 4. Training 2D checkers on 400 training points
with different methods. The least eigenvalue of the tanh
kernel is −59.73.

Results
Table 4 gives average error rates and standard devia-
tion of KSVM-L, RVM, LP-SVM, and for comparison
the best published results found in literature among
[4], [37]–[40]. Most of the time, the experimental set-
tings are comparable to ours. We observe that KSM-L
is always more accurate or close to the best published.
The interesting point is this consistency among the
different datasets, which is a quality that the other
methods cannot claim.

5.4 Computation time
In this section we show the result of a simple ex-
periment dedicated to the training and testing time.
Figure 5 shows in log scales the evolution of the
training and testing time together depending on the
training set size. The test set size is constant to 1000.

The experiment shows that the most efficient
method is KSVM-L, which is an efficient implemen-
tation of KSVM (using partial eigen-decomposition).
libSVM solver is faster (note that we used the com-
piled code and not native Matlab) but the slope of its
curve is higher.

Dataset p n k Type
Balls3D 0.8 200 2 synthetic dissimilarity
diabetes 0.5 768 2 tanh kernel
a1a 0.8 1605 2 tanh kernel
a1a+a1a.t 1

(+test
set)

1605
(+30956)

2 tanh kernel

PolyDistH57 0.1 3000 2 Hausdorff distance
Catcortex 0.8 65 4 cortical connexion

strength
Protein 0.8 213 4 sequence-alignment

similarity
CoilYork 0.8 288 4 Graph matching
Chicken15-45 0.8 446 5 weighted edit distance

between images con-
tours

Chicken29-45 0.8 446 5 weighted edit distance
between images con-
tours

Zongker 0.25 2000 10 template matching on
handwritten digits

Prodom 0.25 2604 4 pairwise structural
alignment on proteins

Chromo-ABS 0.1 4200 22 edit distance on chro-
mosomes

AuralSonar 0.8 100 2 similarity based on hu-
man perception

Amazon47 0.8 204 47 similarity based on
sells

Patrol 0.8 241 8 similarity based on hu-
man memory

Mirex07 0.8 3090 10 similarity based on hu-
man evaluation

TABLE 3
This tables gives an overview of the different datasets
used in our study. For each, we give the proportion of
the dataset that was used for training (p), the dataset
size (n), the number of classes (k), and the origin of

the indefiniteness. The introduction of the
indefiniteness can be quite artificial (like the use of the
tanh kernel or toy dissimilarity datasets), induced by

the structure of the objects (graphs, strings) or
naturally arising in the definition of the task (like

similarities based on human perceptions).

6 DISCUSSION AND CONCLUSION

As already mentioned, we are convinced that apart
from optimization issues, there is no data-driven rea-
son to enforce positive-definiteness in kernel methods.
Literature is replete with examples of applications us-
ing indefinite similarities. Even though some attention
have been given to this problem in the last years,
most of the proposed approaches are deeply linked to
the underlying idea that indefiniteness should be cor-
rected, or at least hidden in some space-embeddings.
The effects of such methods are:

1) the addition of training parameters (the
"amount" of correction...)

2) the need for the transformation of the test points
3) the potential loss of information
4) to obtain a non optimal solution (in the sense of

performance rate)
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Dataset KSVM-L RVM LP Best
Balls3D 41.37% 47.5% 43.62% 45.70% [39]

(6.67) (6.12) (5.22) (1.7)
diabetes 22.59% 22.95% 22.98 % 22.92% [14]

(2.30) (3.38) (3.47)
a1a 17.24 % 16.92% 16.79% 17.08% [14]
∗ (1.88) (1.6) (2.45) -

a1a+a1a.t 15.72% 24.10% 24.05% 15.6% [41]
∗∗∗

PolyDistH57 1.86% 2.92% 2.64% 5.4% [38]
∗∗ (0.50 ) (0.54) (0.61) (1.3)

Catcortex 5.4% 11.53% 11.53 7.0% [38]
(6.3) (8.82) (9.8) (7.1)

Protein 0.2 % 0.2% 2.1% 0.4% [38]
(0.7) (0.7) (1.5) (1.7)

CoilYork 33.10% 39.05% 36.89% 33.6% [39]
(5.05) (6.85) (5.63) (1.2)

Chicken15-45 6.34% 7.30% 7.19% 7% [38]
(2.45 ) (2.2) (2.66) (2.8)

Chicken29-45 4.6% 7.86% 4.91% 4.7% [38]
(2.5) (2.09 ) (1.98) (2.7)

Zongker 5.6% 7.8% 6.5% 4.4% [38]
(0.6) (0.7) (0.6) (0.6)

Prodom 0.9% 1.05% 1.74 % 1.3% [38]
(0.3) (0.4) (0.55) (0.5)

Chromo-ABS 5.3% 5.94% 7.7 7.7% [38]
(0.3) (0.46) (0.7) (0.4)

AuralSonar 12,5% 14.5% 14.25 12% [40]
(6.17) (8.57) (7.99) (6)

Amazon47 12.125% 12.125 % 11.87% 15% [4]
(7.53) (6.85) (6.22) (4.77)

Patrol 12.29% 23.33% 19.37% 11.56% [4]
(4.56) (9.52) (5.81) (4.54)

Mirex07 55.59% 58.47 57.59% 55.44% [4]
(2.23) (2.17) (2.23) (2.52)

TABLE 4
Error rates (standard deviations) are obtained on

average, based of 20 random splits of each dataset.
Results in columns KSVM, RVM and LP are from our
experiments, those from column Best are extracted

from different paper providing experimental results on
the same datasets. We took results in [4], [14],

[38]–[40]. ∗the results of IndefiniteSVM may not be on
average. ∗∗when increasing the training set size up to half of
the dataset size, the test error goes down to 0.62 (0.16) but

we kept the training proportion to 0.1 for the sake of
comparison. ∗∗∗results with a positive semidefinite kernel

The following paragraphs summarize the defaults
of each of the considered methods used to train
indefinite kernel machines.

Why not clip-flip-cut heuristics?

All methods based on the kernel spectrum modifica-
tion (that has to be done simultaneously for train and
test data) suffer from the effects 2,3 and 4 mentioned
above. Point 2 is obvious (and trying to ignore the test
set transformation leads to disasters as those drawn
in section 5.2). Point 3 is linked to the proportion of
indefiniteness in the kernel matrix, that can be very
large. Point 4 is only linked to point 3 only since
solvers are then used in their standard setting.

Fig. 5. This figure shows the training and testing time
for various methods applicable to indefinite matrices for
kernel based classification. The slope of each curve
indicates the complexity of the algorithms. The results
are obtained for training set size from 1000 to 10000,
on checkerboard datasets, which are 2d and separa-
ble. The tanh kernel was used with parameters [-1, 1].
The test set’s size is 1000.

Why not Indefinite-SVM?

What Indefinite-SVM [14], [18] does is quite similar
to the previous case, correcting the kernel in order
to suppress or reduce the indefinite part. Doing so it
suffers from the same effect (2, 3 and 4) but it also
suffers from effect 1, since it requires to cross-validate
over a new hyper-parameters linked to the amount of
correction to be applied.

Why not non-convex optimization methods?

If one wants to keep the indefinite kernel matrix as it
is and still seek for a solution to a SVM-like problem,
one clear path is to apply non-convex optimization,
like DC-methods [12], [13]. This approach however
ignores the Kreı̆n space structure. As illustrated in
section 5.2, the solutions that are found are not that
good in terms of generalization, which is a conse-
quence of the fact that the problem that is actually
solved is not the problem that has to be solved. Hence
those methods suffer from effect 4. Note here that
some authors have pointed out that these methods
work well "with sufficiently small C values" [37],
which means in other terms, when it is not feasible
to optimize towards −∞.

Why not P-SVM?

P-SVM performs least-squares on the kernel entries.
It falls in the family of "kernel as features" methods.
It can be implemented quite efficiently, but its perfor-
mances are unstable.
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Why not LP-SVM?
LP-SVM have been proposed long ago [42], and very
recently in [43], for solving SVM with indefinite ma-
trices. Indeed, applying LP-SVM is actually a way to
use the kernel entries as new features: it is a "kernel as
features" method. Doing so, the indefiniteness has no
more effect, a euclidean distance is actually used. This
approach works pretty well in practice and does not
suffer from any of the above-mentioned effects. From
the series of experiments we have conducted, one
could note that the complexity can be an issue: curves
on figure 5 are all obtained with Matlab implementa-
tions except for LP-SVM, for which we used CPLEX
solver since the Matlab one is known to be quite slow.
Despite this effort and the well known difference of
efficiency between Matlab and compiled languages,
LP-SVM exhibits a poor behavior compared to KSVM-
L or P-SVM.

Why not RVM?
RVM is based on Bayesian inference, and uses the
square of the kernel matrix, which makes it another
"kernel as features" method. It has very nice properties
such as the absence of the C hyper-parameter or a real
sparsity. It also performs quite well most of times on
our tests. Note however that we have observed that
it tends to perform poorly when the training set size
is small.

Why KSVM-L?
Observing the other methods drawbacks does not
make the proposed method better by itself. We review
here theoretical and practical advantages of KSVM-L:
• KSVM-L solver is the only method so far that

uses the specifics of Kreı̆n spaces
• the proposed solution lies in the original space
• KSVM-L always performs at least as well as

previously proposed ones, in a consistent way:
to find equivalent performances for each dataset,
we had to pick among more than 10 methods (see
results in [4] to observe how difficult it was until
now to find a method that works well for a given
dataset).

• Among the tested methods, KSVM-L shows the
best complexity curve.

Having said that, KSVM-L can still be improved on
some practical points:
• The eigen decomposition, even partial, is still

troublesome for training time issues and memory
issues (it requires to precompute the complete
kernel matrix).

• The final solution is not sparse.

6.1 Conclusion
We have shown that solving a stabilization problem
instead of a minimization problem for SVM with in-
definite matrices has theoretical foundations and leads

to better results. We also provide an implementation
of our algorithm. We are convinced that KSVM can
be successfully applied many application fields, in
particular in fields dealing with graph kernels, edit
distances and we are currently working on a even
more efficient solver.
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