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Abstract
The last few years have seen a staggering number
of empirical studies of the robustness of neural
networks in a model of adversarial perturbations
of their inputs. Most rely on an adversary which
carries out local modifications within prescribed
balls. None however has so far questioned the
broader picture: how to frame a resource-bounded
adversary so that it can be severely detrimentalto
learning, a non-trivial problem which entails at a
minimum the choice of loss and classifiers.
We suggest a formal answer for losses that sat-
isfy the minimal statistical requirement of being
proper. We pin down a simple sufficient property
for any given class of adversaries to be detrimental
to learning, involving a central measure of “harm-
fulness” which generalizes the well-known class
of integral probability metrics. A key feature of
our result is that it holds for all proper losses, and
for a popular subset of these, the optimisation of
this central measure appears to be independent of
the loss. When classifiers are Lipschitz – a now
popular approach in adversarial training –, this
optimisation resorts to optimal transportto make
a low-budget compression of class marginals. Toy
experiments reveal a finding recently separately
observed: training against a sufficiently budgeted
adversary of this kind improvesgeneralization.

1. Introduction
Starting from the observation that deep nets are sensitive to
imperceptible perturbations of their inputs (Szegedy et al.,
2013), a surge of recent work has focussed on new adver-
sarial training approaches to supervised learning (Athalye
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et al., 2018a;b; Bastani et al., 2016; Buckman et al., 2018;
Bubeck et al., 2018; Cai et al., 2018; Dhillon et al., 2018;
Fawzi et al., 2018; Gilmer et al., 2018; Goswami et al., 2018;
Guo et al., 2018; Ilias et al., 2018; Kurakin et al., 2017; Ma
et al., 2018; Madry et al., 2018; Samangouei et al., 2018;
Song et al., 2018; Tramèr et al., 2018; Tsipras et al., 2019;
Uesato et al., 2018; Wang et al., 2018; Wong & Zico Kolter,
2018) (and references within). In the now popular model
of Madry et al. (2018), we want to learn a classifier from a
set H , given a distribution of clean examples D and loss ! .
Adversarial training then seeks to find

arg min
h! H

E(X,Y)" D

!
max

! :#! #$ ! !
! (Y, h(X + ! ))

"
, (1)

where ! .! is a norm and " % is the budget of the adversary. It
has recently been observed that adversarial training damages
standard accuracy as data size and adversary’s budget (" %)
increases (Tsipras et al., 2019). A Bayesian explanation is
given for a particular { D, ! .! , ! } in Tsipras et al. (2019), and
the authors conclude their findings questioning the interplay
between adversarial robustness and standard accuracy.

In this paper, we dig into this relationship (i) by casting the
standard accuracy and loss in (1) in the broad context of
Bayesian decision theory (Grünwald & Dawid, 2004) and
(ii) by considering a general form of adversaries, not re-
stricted to the ones used in (1). In particular, we assume that
the loss is proper, which is just a general form of statistical
unbiasedness that many popular choices meet (Hendrickson
& Buehler, 1971; Reid & Williamson, 2010). The mini-
mization of a proper loss gives guarantees on the accuracy
(for example, Kearns & Mansour (1996)), so it directly
connects to the setting of Tsipras et al. (2019). Regarding
the adversaries, instead of relying on the local adversarial
modification X " X + ! for some ! ! ! # " %, we consider
a set of possible local modifications X " a(X) for some
a $ A % XX (A fixed). We then analyze the conditions on
A under which, for some # > 0,

min
h! H

E(X,Y)" D

!
max
a! A

! (Y, h &a(X))
"

' (1 ( #)! 0 , (2)

where ! 0 is the loss of the "blunt" predictor which predicts
nothing. If h has range R, this blunt predictor is in general
0 (for the log loss, square loss, etc), which translates into
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transformations from digit-1 transformations from digit-3
0 0.15 0.3 0.45 0.6 0 0.15 0.3 0.45 0.6

#1 #3

#2 #4

Table 1: Top table: compression of the optimal transport
(OT) plan for a Mixup adversary on a toy 1D data. Bottom
table: transformations performed by a Monge adversary
for the digit-1 vs digit-3 classification problem on
four USPS digits (noted #1 to #4 ), for various adversarial
budgets (0 = clean data, see Section 7 for details).

a class probability estimate of 1/ 2 for all observations and
global accuracy of 50% for two classes, i.e. that of an
unbiased coin. We see the connection of (2) to the accuracy:
as # ) , the learner will be tricked into converging to an
extremely poorly accurate predictor. How one can design
such provably efficient adversaries, furthermore under tight
budget constraints, is the starting point of our paper.

Our first contribution (Section 4) analyzes budgeted ad-
versaries that can enforce (2). Our main finding shows that
(2) is implied by a very simple condition involving a central
quantity ! generalizing the celebrated integral probability
metrics (Sriperumbudur et al., 2009). Furthermore, under
some additional condition on the loss, satisfied by the log,
square and Matsushita losses, the adversarial optimization
of ! does not depend on the loss. In other words,

the adversary can attack the learner disregarding its loss.

Our second contribution (Section 5) considers the adver-
sarial optimisation of ! when the classifiers in H satisfy a
generalized form of Lipschitz continuity. Controlling Lips-
chitz continuity has recently emerged as a solution to limit
the impact of adversarial examples (Cissé et al., 2017). In
this context, efficient budgeted adversaries take a particular
form: we show that, for an adversary to minimize ! ,

it is sufficient to compress the optimal transport plan
between class marginals using the Lipschitz function as

transportation cost, disregarding the learner’s H .

This result brings the machinery of optimal transport (OT)
to the table of adversarial design (Villani, 2009), with a new
purpose (the compression of OT plans). These two findings

turn out to be very useful from an experimental standpoint:
we have implemented two kinds of adversaries inspired by
our theory (called Mixup and Monge for their respective
links with Zhang et al. (2018); Villani (2009)); Table 1
displays their behaviour on two simple problems. We have
observed that training a learner against a ”weak” (severely
budgeted) adversary improves generalizationon clean data,
a phenomenon also observed elsewhere (Tsipras et al., 2019;
Zhang et al., 2018). The digit experiment displays how
our adversaries progressively transform observations of one
class into credible observations of the other (See Section 7,
and Supplementary Material, SM).

Our third contribution (Section 6) is an adversarial boost-
ing result: it answers the question as to whether one can
efficiently craft an arbitrarily strongadversary from the sole
access to a black box weakadversary. In the framework of
reproducing kernel Hilbert spaces (RKHS), we show that

this "weak adversary" * "strong adversary" design does
exist, and our proof is constructive: we build one.

Our proof revolves around a standard concept of fixed point
theory: contractive mappings. We insist on the computa-
tional efficiency of this design, linear in the coding size of
the Wasserstein distance between class marginals. It shows
that, on some adversarial training problems, the existence of
the weakest forms of adversaries implies that much stronger
ones may be available at cheap (computational) cost.

2. Related work
Formal approaches to the problem of adversarial training
are sparse compared to the growing literature on the arms
race of experimental results. The formal trend has started
on adversarial changes to a loss to be optimized (Sinha
et al., 2018) or more directly on a classifier’s output (Hein
& Andriushchenko, 2017; Raghunathan et al., 2018). For
example, (Sinha et al., 2018) add a Wasserstein penalty to a
loss, computing the distance between the true and adversar-
ial distributions. They provide smoothness guarantees for
the loss and robustness in generalization for its minimization.
(Raghunathan et al., 2018) directly penalize the classifier’s
output (not a loss per se), in the context of shallow networks,
and compute adversarial perturbations in a bounded L &

ball. A similar approach (but in L p-norm) is taken in (Hein
& Andriushchenko, 2017) for kernel methods and shallow
networks. Recent ones also focus on introducing general
robustness constraints (Bastani et al., 2016).

More recently, a handful of work have started to investigate
the limits of learning in an adversarial training setting, but
they are limited in that they address particular simulated
domains with a particular loss to be optimized, and consider
particular adversaries (Bubeck et al., 2018; Fawzi et al.,
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2018; Gilmer et al., 2018). The distribution can involve
Gaussians of mixtures (Bubeck et al., 2018; Fawzi et al.,
2018) or the data lies on concentric spheres (Gilmer et al.,
2018). The loss involves a distance based on a norm for
all, and the adversary makes local shifts to data of bounded
radius. In the case of (Bubeck et al., 2018), the access to
the data is restricted to statistical queries. The essential
results are either that robustness requires too much informa-
tion compared to not requiring robustness (Bubeck et al.,
2018), or the "safety" radius of inoffensive modifications is
in fact small relative to some of the problem’s parameters,
meaning even "cheap" adversaries can sometimes generate
damaging adversarial examples (Fawzi et al., 2018; Gilmer
et al., 2018). This depicts a pretty negative picture of adver-
sarial training — negative but local: all these results share
the same common design pattern of relying on particular
choices for all key components of the problem: domain,
loss and adversaries (and eventually classifiers). There is no
approach to date that would relax any of these choices, even
less so one that would simultaneously relax all.

3. Definitions and notations
We present some important definitions and notations.

$ Proper losses. Many of our notations follow (Reid &
Williamson, 2010). Suppose we have a prediction problem
with binary labels. We let ! : {( 1, 1} + [0, 1] " R denote
a general loss function to be minimized, where the left
argument is a class Y $ {( 1, 1} and the right argument
is a class probability estimate (R is the closure of R). Its
conditional Bayes riskfunction is the best achievable loss
when labels are drawn with a particular positive base-rate,

L(%) .= inf
c

EY" " ! (Y, c), (3)

where % $ [0, 1], so that Pr[Y = 1] = %and Pr[Y =
( 1] .= 1 ( %. We call the loss proper iff Bayes predic-
tion locally achieves the minimum everywhere1: L(%) =
EY! (Y, %), , %$ [0, 1]. One value of L is interesting in our
context, the one which corresponds to Bayes rule returning
maximal "uncertainty", i.e. for %= 1/ 2,

! ' .= L
#

1
2

$
. (4)

Without further ado, we give the key definition which makes
more precise the framework sketched in (2).

Definition 1 For any proper loss! and(H , A) integrable
with respect to some distributionD, theadversarial loss
! (H , A, D) is deÞned as

! (H , A, D) .= min
h! H

E(X,Y)" D

!
max
a! A

! (Y, h &a(X))
"

.(5)

1Losses for which propernessmakes particular sense are called
class probability estimation losses (Reid & Williamson, 2010).

For any# $ [0, 1], we say thatH is #-defeated by A on ! iff

! (H , A, D) ' (1 ( #) á! ' . (6)

Intuitively, if the adversary can modify instances such that
the learner does not do much better than a trivial blunt
constant predictor, the adversary can declare victory. The
additional quantities (such as the integrability condition)
are given later in this section. To finish up with gen-
eral proper losses, as an example, the log-loss given by
! (+1 , c) = ( logc and ! (( 1, c) = ( log(1 ( c) is proper,
with conditional Bayes risk given by the Shannon entropy
L(%) = ( %álog%( (1 ( %) álog(1 ( %).

$ Composite, canonical proper losses. We let H % RX

denote a set of classifiers. To convert real valued predic-
tions into class probability estimates (McCullagh & Nelder,
1989), one traditionally uses an invertible link function
& : [0, 1] " R, forming a compositeloss ! # (y, v) .=
! (y, &( 1(v)) (Reid & Williamson, 2010). We shall leave
hereafter the adjective composite for simplicity, and the link
implicit from context whenever appropriate. The unique (up
to multiplication or addition by a scalar (Buja et al., 2005))
canonical linkfor a proper loss ! : {( 1, 1} + [0, 1] " R
is defined from the conditional Bayes risk as & .= ( L )

(Reid & Williamson, 2010, Section 6.1), (Buja et al., 2005).
As an example, for log-loss we find the canonical link
&(u) = log u

1( u , with inverse the well-known sigmoid
&( 1(v) = (1 + e( v )( 1. A proper loss will also be as-
sumed to be twice differentiable. Twice differentiability is a
technical convenience to simplify derivations. It can be re-
moved (Reid & Williamson, 2010, Footnote 6). A canonical
proper loss is a proper loss using the canonical link.

$ Adversaries. Let A % XX denote a set of adversaries,
so that any a $ A is allowed to transform instances in
some way (e.g., change pixel values on an image). Suppose
D (fixed) denotes a distribution over X + {( 1, 1} and P
(resp. N ) is the corresponding distribution conditioned on
Y = 1 (resp. Y = ( 1). The only assumption we make
about adversaries is a measurability one. We assume that
, h $ H , , a $ A , h &a is integrable with respect to P
and N : h &a $ L 1(X, dP) - L 1(X, dN ). For the sake of
simplicity, we shall denote the tuple (H , A) integrablewith
respect to D . Assuming loss ! is proper composite with link
&, there is one interesting constant h' $ R:

h' .= &
#

1
2

$
, (7)

because this value delivers the real valued prediction corre-
sponding to maximal uncertainty in (4). For example, when
the loss is proper canonical and furthermore required to be
symmetric, i.e. there is no class-dependent misclassification
cost, we have (Nock & Nielsen, 2008)

h' = 0 , (8)
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which corresponds to a classifier always abstaining and
indeed delivering maximal uncertainty on prediction. It is
not hard to check that ! ' = E(X,Y)" D [! (Y, h' )] is the loss
of constant h' . So we can now see that in Definition 1,
as # ) 0, training against the adversarial loss essentially
produces a classifier no better than predicting nothing. We
do not assume that h' $ H , but keep in mind that such
prediction with maximal uncertainty is the baseline against
which a learner has to compete to "learn" something.

$ The adversarial distortion parameter! . We now unveil
the key parameter used earlier in the Introduction. For any
f $ L 1(X, dQ), u, v $ R, we let:

' (Q, f, u, v ) .=
%

X
u á(f (x ) + v)dQ(x ). (9)

For any g : R " R, the adversarial distortion ! is:

! g
H ,a(P,N,⇡, b, c) (10)
.
=max

h2H
{'(P, g ! h ! a,⇡, b) " '(N, g ! h ! a, 1 " ⇡, " c)} .

Finally, ! H ,a
.= ! Id

H ,a . While abstract, we shall shortly see
that quantities ! H ,a , ! g

H ,a relate to a well-known object in
the study of distances between probability distributions. Let

! $
hard

.= %L(1) + (1 ( %)L(0). (11)

As an example, we have for the the log-loss ! $
hard = 0 , , %,

with the convention 0 log 0 = 0. We remark that ! $
hard in

(11) is related to ! g
H ,a in (10):

! $
hard = ! g!

H ! ,a (P, N, %,0, 0), (12)

for g% .= Y áL and H % the singleton classifier which makes
the hard prediction 0 over N and 1 over P (Hereafter, we
note ! g!

H ! ,a instead of ! g!

H ! ,a (P, N, %,0, 0) for short). Re-
mark that such a classifier is not affected by a particular
adversary, but it is not implementable in the general case as
it would require to know the class of an observation.

4. Main result: the hardness theorem
We now show a lower bound on the adversarial loss of (5).

Theorem 2 For any proper loss! , link & and any(H , A)
integrable with respect toD , the following holds true:

! (H , A, D) '
#

! ' (
1
2

ámin
a! A

( a

$

+
, (13)

where:

x+
.= max { 0, x} ,

( a
.= ! g

H ,a (P, N, %,2L(1), 2L(0)) ,

g .= ( ( L )) &&( 1. (14)

(all other parameters implicit in the definition of ( a , Proof
in SM, Section 2) This pins down a simple condition for the
adversary to defeat H .

Corollary 3 Under the conditions and with notations of
Theorem2, if there exists# $ [0, 1] anda $ A such that

( a # 2#!' , (15)

thenH is #-defeated byA on ! .

(Proof in SM, Section 2) We remark that whenever ! is
canonical, g = Id and so

( a = ! H ,a (P, N, %,2L(1), 2L(0)) . (16)

We also note that constants L(0), L (1) get out of the max-
imization problem in (10) so when ! is canonical, the op-
timisationof ! H ,a does not depend on the loss at hand —
hence, its optimisation by an adversary could be done with-
out knowing the loss that the learner is going to minimise.
We also remark that the condition for H to be #-defeated
by A does not involve an algorithmic component: it means
that any learning algorithm minimising loss ! will end up
with a poor predictor if (15) is satisfied, regardless of its
computational resources.

$ Relationships with integral probability metrics. In a spe-
cial case, the somewhat abstract quantity ! g

H ,a can be re-
lated to the more familiar class of integral probability met-
rics (IPMs) (Sriperumbudur et al., 2009). The latter are a
class of metrics on probability distributions, capturing e.g.
the total variation divergence, Wasserstein distance, and
maximum mean discrepancy. The proof of the following
Corollary is immediate.

Corollary 4 Suppose! $
hard = 0 andH is closed by nega-

tion. Then

2 á( a

=max
h! H

&
&
&
&

%

X
g &h &a(x )dP(x ) (

%

X
g &h &a(x )dN (x )

&
&
&
&,

which is the integral probability metric for the class{ g &
h &a : h $ H } onP andN . Here,g is deÞned in(14).

We may now interpret Theorem 2 as saying: for an adversary
to defeat a learner minimising a proper loss, it suffices to
make a suitable IPM between the class-conditionals P, N
small. The particular choice of IPM arises from the learner’s
choice of hypothesis class, H . Of particular interest is when
this comprises kernelized scorers, as we now detail.

$ Relationships with the maximum mean discrepancy. The
maximum mean discrepancy (MMD) (Gretton et al., 2006)
corresponds to an IPM where H is the unit-ball in an RKHS.
We have the following re-expression of ) H ,a for this hy-
pothesis class, which turns out to involve the MMD.
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Figure 1: Suppose an adversary a can guarantee an upper-
bound on MMD" as displayed in thick red. For some fixed
! (L ) and #, we display the range of %values (in pink) for
which a #-defeats H . Notice that outside this interval, it
may not be possible for a to #-defeat H (in grey, tagged
"?"), and if %is large enough (orange, tagged "safe"), then
it is not possible for condition (15) to be satisfied anymore.

Corollary 5 Suppose! is proper canonical and letH de-
note the unit ball of a reproducing kernel Hilbert space
(RKHS) of functions with reproducing kernel* . Denote

µa,Q
.=

%

X
* (a(x ), .)dQ(x ) (17)

the adversarial mean embedding ofa on Q. If %= 1 / 2 and
! $

hard = 0 , then

2 á( a =
1
2

á !µa,P ( µa,N ! H . (18)

The constraints on %,! $
hard are for readability: the proof

(in SM, Section 3) shows a more general result, with
unrestricted %,! $

hard. The right-hand side of (18) is pro-
portional to the MMD between P and N . In the more
general case, the right-hand side of (18) is replaced by
MMD"

.= ! %áµa,P ( (1 ( %) áµa,N ! H . Figure 1 dis-
plays an example picture (for unrestricted %,! $

hard) for some
canonical proper but asymmetric loss (L(0) .= L(1)) when
an adversary with a given upperbound guarantee on MMD"

can indeed #-defeat some H . We remark that while this may
be possible for a whole range of %, this may not be possible
for all. The picture would be different if the loss were sym-
metric (Corollary 6 below), since in this case a guarantee
to #-defeat H for some%would imply a guarantee for all.
Loss asymmetry thus brings a difficulty for the adversary
which, we recall, cannot act on %.

$ Simultaneously defeatingH oversets of losses. Satisfying
(15) involves at least the knowledge of one value of the
loss, if not of the loss itself. It turns out that if the loss is

canonical and the adversary has just a partial knowledge of
it, it may in fact still be possible for him to guess whether
(15) can be satisfied over this set, as we now show.

Corollary 6 LetL be a set of canonical proper losses sat-
isfying the following property:, ! $ L , / L   $ R such that
L (1) = L(0) .= L   . Assuming(H , A) integrable with
respect toD , if

/ a $ A : ! H ,a (P, N, %,0, 0) # #áinf
$! L

! ' ( L   ,(19)

thenH is jointly #-defeated byA on all losses ofL .

Notice that all the adversary needs to know is L . The result
easily follows from remarking that we have in this case:

( a = 2L   + ! H ,a (P, N, %,0, 0),

which we then plug in (15) to get the statement of the Corol-
lary. Corollary 6 is interesting for two reasons. First, it
applies to all proper symmetric losses (Nock & Nielsen,
2008; Reid & Williamson, 2010), which includes popular
losses like the square, logistic and Matsushita losses. Fi-
nally, it does not just offer the adversarial strategy to defeat
classifiers that would be learned on any of such losses, it also
applies to more sophisticated learning strategies that would
tunethe loss at learning time (Nock & Nielsen, 2008; Reid
& Williamson, 2010) or tailor the loss to specific constraints
(Buja et al., 2005).

5. Monge efficient adversaries
We now highlight a sufficient condition on adversaries for
(15) to be satisfied, which considers classifiers in the in-
creasingly popular framework of "Lipschitz classification"
for adversarial training (Cissé et al., 2017), and turns out to
frame adversaries in optimal transport (OT) theory (Villani,
2009). We proceed in three steps, first framing OT adver-
saries, then Lipschitz classifiers and finally showing how
the former defeats the latter.

Definition 7 Given anyc : X + X " R and some" $
Im( c), we say thatA is " -Monge efficient for costc on
marginalsP, N iff / a $ A : C(a, P, N ) # " , with

C(a, P, N ) .= inf
µ ! !( P,N )

%
c(a(x ), a(x )))dµ(x , x )),

and ! is the set of all joint probability measures whose
marginals areP andN .

Hence, Monge efficiency relates to an efficient compression
of the transport plan between class marginals. In fact, we
should require c to satisfy some mild additional assump-
tions for the existence of optimal couplings (Villani, 2009,
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Theorem 4.1), such as lower semicontinuity. We skip them
for the sake of simplicity, but note that infinite costs are
possible without endangering the existence of optimal cou-
plings of (P, N ) (Villani, 2009), which is convenient for the
following generalized notion of Lipschitz continuity.

Definition 8 Let c : X + X " R. For someK > 0 and
u, v : R " R, setH is said to be(u, v, K )-Lipschitz with
respect toc iff

u &h(x ) ( v &h(y )# K ác(x , y ), , h $ H , , x , y $ X. (20)

We shall also write that H is K -Lipschitz if Definition 8
holds for u = v = Id (c implicit). Actual Lipschitz continu-
ity would restrict c to involve a distance, and the state of the
art of adversarial training would restrict further the distance
to be based on a norm (Cissé et al., 2017). Equipped with
this, we obtain the main result of this Section.

Theorem 9 Fix any # > 0 and proper canonical loss! .
Suppose/ c : X + X " R such that:

(1)H is 2K -Lipschitz with respect toc;

(2)A is " -Monge efÞcient for costc on marginalsP, N for

" #
4#!' ( 2! $

hard

K
. (21)

ThenH is #-defeated byA on ! .

The proof (in SM, Section 4) is given for the more general
case where %is not necessarily 1/ 2 and any proper loss, not
necessarily canonical. We also show in the proof that unless
%= 1/ 2, c cannot be a distance in the general case. We
take it as a potential difficulty for the adversary which, we
recall, cannot act on %.

Theorem 9 is particularly interesting with respect to the
current developing strategies around adversarial training
that "Lipschitzify" classifiers (Cissé et al., 2017). Such
strategies assume that the loss ! is Lipschitz (remark that
we do not make such an assumption). In short, if we rename
! adv the inner part (within [.]) in (5), those strategies exploit
the fact that (omitting key parameters for readability)

! adv(h) # ! clean(h) + K $K h , , h $ H , (22)

where ! clean is the adversary-free loss and K . is the Lips-
chitz constant of the loss (! ) or classifier learned (h). One
might think that minimizing (22) is not a good strategy in
the light of Theorem 9 because the regularization enforces a
minimization of K h (K in Theorem 9), so we seemingly al-
leviate constraints on the adversary to be " -Monge efficient
in (21) and can end up being more easily defeated. This is

however a too simplistic conclusion that does not take into
account the other parameters at play, as we now explain in
the context of Cissé et al. (2017). Consider the logistic loss
(Cissé et al., 2017), for which:

! ' = K $ = 1 , ! $
hard = 0 . (23)

Suppose we can reduce both! clean(h) and K h (which is in
fact not hard to ensure for deep architectures (Miyato et al.,
2018, Section 2.1), (Cranko et al., 2018)) so that K h #
(1( ! clean(h)) / 2 = ( ! ' ( ! clean(h)) / (K $+ ! ' ). Reorganizing,
we get ! clean(h) + K $K h # (1 ( K h )! ' , so for H to be #-
defeated, we in fact get a constraint on #: # ' K h , which
reframes the constraint on " in (21) as (see also SM, (32)),

" # 4! ' (
! $

hard

K h
= 4 , (24)

which does not depend anymore on K h .

The proof of Theorem 9 is followed in SM by a proof of an
interesting generalization in the light of those recent results
(Cissé et al., 2017; Cranko et al., 2018; Miyato et al., 2018):
the Monge efficieny requirement can be weakened under a
form of dominance (similar to a Lipschitz condition) of the
canonical link with respect to the chosen link of the loss. We
now provide a simple family of Monge efficient adversaries.

$ Mixup adversaries.Very recently, it was experimentally
demonstrated how a simple modification of a training sam-
ple yields models more likely to be robust to adversarial
examples and generalize better (Zhang et al., 2018). The pro-
cess can be summarized in a simple way: perform random
interpolation between two randomly chosen training exam-
ples to create a new example (repeat as necessary). Since
we do not allow the adversary to tamper with the class, we
define as +-mixup(for + $ [0, 1]) the process which creates
for two observations x and x ) having a different class the
following adversarial observation (same class as x ):

a(x ) .= + áx + (1 ( +) áx ). (25)

We make the assumption that X is metric with an associated
distance that stems from this metric. We analyze a very
simple case of +-mixup, which we call +-mixup tox %, which
replaces x ) by some x % in X in (25). Notice that as + " 0,
we converge to the maximally harmful adversary mentioned
in the introduction. The intuition thus suggests that the set
A of all +-mixups to some x % (where we vary +) designs
in fact an arbitrarily Monge efficient adversary, where the
optimal transport problem involves the associated distance
of X. This is indeed true and in fact simple to show.

Lemma 10 For any " > 0 the set of all+-mixups tox %

is " -Monge efÞcient for+ # "/W 1, whereW1 is the 1-
Wasserstein distance between the class marginals.



Monge blunts Bayes: Hardness Results for Adversarial Training

(Proof in SM, Section 6) The mixup methodology as defined
in (Zhang et al., 2018) can be specialized in numerous ways:
for example, instead of mixing up with a single observation,
we could perform all possible mixups within S in a spirit
closer to (Zhang et al., 2018), or mixups with several dis-
tinguished observations (e.g.after clustering), etc. . Many
choices like these would be eligible to be at least Monge
efficient, but while they can be computationally simple to
compute, they are just surrogates for Monge efficiency: tack-
ling directly the compression of the optimal transport plan
is a more direct option to Monge efficiency.

6. From weak to strong Monge efficiency
In Theorem 9, we showed how Monge efficiency for ad-
versaries can "take over" Lipschitz classifiers and defeat
them for some # > 0. Suppose now that the A we have
is weakin that all its elements are Monge efficient but for
large values of " . In other words, we cannot satisfy condi-
tion (2) in Theorem 9. Is there another set of adversaries,
A%, whose elements would combine the elements of A is a
computationally savvy way, and which would achieve any
desired level of Monge efficiency? Such a question parallels
that of the boosting framework in supervised learning, in
which one combines classifiers just different from random
to achieve a combination arbitrarily accurate (Schapire &
Freund, 2012).

We now answer our question by the affirmative, in the con-
text of kernel machines. Let H denote a RKHS and " a
feature map of the RKHS. , f : X " X, define cost

C" (f, P, N )
.= inf

µ ! !( P,N )

%

X
! " &f (x ) ( " &f (x ))! H dµ(x , x )).

Definition 11 Functiona : X " X is said, -contractive
for " , for some, > 0 iff ! " &a(x ) ( " &a(x ))! H #
(1 ( , ) á !"( x ) ( "( x ))! H , , x , x ) $ X.

Set A is said , -contractive for " iff it contains at least one ad-
versary , -contractive for " (and we make no assumption on
the others). Define now AJ .= { a&a&...&a (J times) : a $
A} for any J $ N%, and W "

1
.= inf µ ! !( P,N )

'
X ! "( x ) (

"( x ))! H dµ(x , x )), the 1-Wasserstein distance between
class marginals in the feature map.

Theorem 12 LetH denote a RKHS with feature map" and
A be, -contractive for" . ThenA is " -Monge efÞcient for
" = (1 ( , ) áW "

1 . Furthermore,, " > 0, AJ is " -Monge
efÞcient whenJ ' (1/, ) álog(W "

1 /" ).

(Proof in SM, Section 5) To amplify the difference between
A and AJ , remark that the worst case of Monge efficiency is

-/d c/c c/a a/c a/a
0.15 0.03 0.11 0.00 0.02
0.30 0.03 0.25 0.00 0.12
0.45 0.03 0.48 0.01 0.55
0.60 0.03 0.74 0.20 0.96

Table 2: log loss USPS results. -/d is the strength of the
adversary. The convention { a,c} / { a,c} follows Figure 2.
Bold faces denote results better than the c/c baseline.

" = W "
1 , since it is just the Monge efficiency for contracting

nothing. So, as , " 0, there is barely any guarantee we
can get from the , -contractive A while AJ can still be
arbitrarily Monge efficient for a J linear in the coding size
of the Wasserstein distance between class marginals.

7. Experiments
We have performed toy experiments to demonstrate our new
setting. Our objective is not to investigate the competition
with respect to the wealth of results that have been recently
published in the field, but rather to touch upon the interest
that such a novel setting might have for further experimental
investigations. Compared to the state-of-the-art, ours is a
clear two-stage setting where we first compute the adver-
saries assuming relevant knowledge of the learner (in our
case, we rely on Theorem 12 and therefore assume that the
adversary knows at least the cost c, see below), and then we
learn based on an adversarially transformed set of examples.
This process has the advantage over the direct minimization
of (2) that it extracts the computation of the adversarial ex-
amples from the training loop: we can generate oncethe
adversarial examples, then store them and / or share / reuse
them to robustly train various models (recall that under a
general Lipschitz assumptions on classifiers, such examples
can fit the adversarial training of different kinds of mod-
els, see Theorem 9). This process is also reminiscent of
the training process for invariant support vector machines
(DeCoste & Schölkopf, 2002) and can also be viewed as a
particular form of vicinal risk minimization (Chapelle et al.,
2000). We have performed two experiments: a 1D experi-
ment involving a particular Mixup adversary and a USPS
experiment involving a closer proxy of the optimal transport
compression that we call Monge adversary.

$ 1D experiment, mixup adversary. Our example involves
the unit interval X = [0 , 1] with P(x) 0 exp(( (x (
0.2)2/ 0.12) and N (x) 0 exp(( (x ( 0.6)2/ 0.22). We let
A contain a single deterministic mapping parametrised by
- as A .= { a(x) .= (1 ( - )x + - E(X,Y)" D X} . Notice that
this adversary is just the (1 ( - )-mixup to the unconditional
mean, following Section 6. We further let H be the space of
linear functions h(x) = w á(x, 1)* , w $ R2, which is the
RKHS with linear kernel * (x , y ) = x áy (assuming that
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1D problem USPS handwritten digits
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!
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Expected logistic loss Cost ! and weight norm #w #2
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0 0.15 0.3 0.45 0.6 0 0.15 0.3 0.45 0.6

Figure 2: Left: results for the 1D toy problem as a function of - . Left plot: the expected log loss for the training/testing
distribution pairs a/a, a/c, and c/a, where a (respectively c) denotes the adversarial (clean) data distribution. Hence for a/c we
optimised the logistic regression classifier on the adversarial distribution, and computed the log loss on the clean distribution.
Right plot: the optimal transport cost " (left scale) and the norm of the logistic regression weights ! w ! 2 (right scale). Right:
sample results of digits as they are transformed by the OT adversary (convention follows Figure 1).

x and y include the constant 1), and ! h! H = ! w ! 2. The
transport cost function of interest is c(x , y ) = ! x ( y ! 2.
We discretize X to simplify the computation of the OT cost.
Results are summarized in Figure 2 (and SM). We theoreti-
cally achieve loss ! 0 as - " 1. There are several interesting
observations from Figure 2: first, the mixup adversary in-
deed works like a Monge efficient adversary: by tuning
- , we can achieve any desired level of Monge efficiency.
The left plot completes in this simple case observations of
Tsipras et al. (2019); Zhang et al. (2018): the worst result is
consistently obtained for training on clean data and testing
on adversarial data, which indicates that our adversaries
may be useful to get robustness using adversarial training.

$ USPS digits, Monge adversary. We have picked 100 ex-
amples of each of the "1" and "3" classes of the 8+ 8 pixel
greyscale USPS handwritten digit dataset. The set of Monge
adversaries is A .= { a : R64 1" R64 | ! a(x) ( x! 1 # - } ,
in which, under the L 1 budget constraint, we optimize
the Wasserstein distance W 2

2 between the empirical class
marginals. This budgeted optimisation problem is convex
and we solve it by combining a generic gradient-free opti-
miser with a linear program solver. We learn using logistic
regression. We demonstrate three strengths of adversary
— namely -/d = 0 .15, 0.30, 0.45, 0.6 where d is L 1 dis-
tance between the (clean) class conditional means. Sample
transformations as obtained by the Monge adversary are dis-
played in Figure 2 (more in SM), and Table 2 provides log
loss values for different training / test schemes, following
the scheme of the 1D data. It clearly emerges two facts:
(i) as the budget increases, the Monge adversary smoothly
transforms digits in credible adversarial examples, and (ii),
as previously observed, training over a tight budget adver-
sary tends to increase generalization abilities (Tsipras et al.,
2019; Zhang et al., 2018).

8. Conclusion
It has been observed over the past years that classifiers can
be extremely sensitive to small changes in inputs. How such
resource-constrained changes can affect and be so damaging
to machine learning and how to find a cure has been growing
as a very intensive area of research. There is so far little
understanding on the formal side and some experimental
approaches would rely on adversarial data that, in some way,
shrinks the gap between classes in a controlled way.
In this paper, we make this intuition formal. Our answer in-
volves a simple, sufficient (and sometimes loss-independent)
property for any given class of adversaries to be detrimental
to learning. This property involves a measure of “harmful-
ness”, which relates to (and generalizes) integral probability
metrics and the maximum mean discrepancy. When classi-
fiers are Lipschitz, this further translates to an optimisation
problem (Monge efficiency) which amounts to compressing
optimal transport plans, which we believe also defines a new
avenue for optimal transport. We also delivered a negative
boosting result which shows how weakly contractive adver-
saries for a RKHS can be combined to build a maximally
detrimental adversary.
On the experimental side, we provided a simple toy as-
sessment of the ways one can compute and then use such
adversaries in a two-stage process. Our adversaries are sim-
ple Monge efficient adversaries that we built to exemplify
the use and impact of our theory on toy domains, so we ex-
pect that significant improvement can be obtained from the
standpoint of designing such efficient adversaries. This is
important because training against a weakly activated form
of such adversary can improve generalization performances,
and it goes with the significant advantage that the examples
we generate are reusable and provably adversarial for any
class of models satisfying mild conditions.
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2 Proof of Theorem 2 and Corollary 3

Our proof assumes basic knowledge about proper losses (see for example Reid & Williamson
(2010)). From (Reid & Williamson, 2010, Theorem 1, Corollary 3) and Shuford et al. (1966),!
being twice differentiable and proper, its conditional Bayes riskL and partial losses! 1 and! %1 are
related by:

%L&&(c) =
! &

%1(c)
c

= %
! &

1(c)
1 %c

, &c ' (0, 1). (1)

The weight function (Reid & Williamson, 2010, Theorem 1) being alsow = %L&&, we get from the
integral representation of partial losses (Reid & Williamson, 2010, eq. (5)),

! 1(c) = %
! 1

c
(1 %u)L&&(u)du, (2)

from which we derive by integrating by parts and then using the Legendre conjugate of%L,

! 1(c) + L(1) = %[(1 %u)L&(u)]1
c %

! 1

c
L&(u)du + L(1)

= (1 %c)L&(c) + L(c) %L(1) + L(1) (3)

= %(%L&)(c) + c á(%L&)(c) %(%L)(c)

= %(%L&)(c) + ( %L)! ((%L)&(c)). (4)

Now, suppose that the way a real-valued predictionv is Þt in the loss is through a general inverse
link " %1 : R ( (0, 1). Let

v",#
.= ( %L&) ) " %1(v). (5)

Since(%L)&%1(v",# ) = " %1(v), the proper composite loss! with link " on predictionv is the same
as the proper composite loss! with link (%L)&on predictionv",# . This last loss is in fact using
its canonical link and so is proper canonical (Reid & Williamson, 2010, Section 6.1), (Buja et al.,
2005). Letting in this casec .= ( %L)&%1(v",# ), we get that the partial loss satisÞes

! 1(c) = %v",# + ( %L)! (v",# ) %L(1). (6)

Notice the constant appearing on the right hand side. Notice also that if we see(3) as a Bregman
divergence,! 1(c) = ( %L)(1) %(%L)(c) %((1 %c)(%L&)(c) = D%L (1*c), then the canonical link
is the function that deÞnes uniquely the dual afÞne coordinate system of the divergence (Amari &
Nagaoka, 2000) (see also (Reid & Williamson, 2010, Appendix B)).

We can repeat the derivations for the partial loss! %1, which yields (Reid & Williamson, 2010,
eq. (5)):

! %1(c) + L(0) = %
! c

0
uL&&(u)du + L(0)

= %[uL&(u)]c
0 +

! c

0
L&(u)du

= %cL&(c) + L(c) %L(0) + L(0) (7)

= c á(%L&)(c) %(%L)(c)

= ( %L)! ((%L)&(c)), (8)

3



and using the canonical link, we get this time

! %1(c) = ( %L)! (v",# ) %L(0). (9)

We get from (6) and (9) the canonical proper composite loss

! (y, v) = ( %L)! (v",# ) %
y + 1

2
áv",# %

1
2

á((1 %y) áL(0) + (1 + y) áL(1)) . (10)

Note that for the optimisation of! (y, v) for v, we could discount the right-hand side parenthesis,
which acts just like a constant with respect tov. Using Fenchel-Young inequality yields the
non-negativity of! (y, v) as it brings(%L)! (v",# ) %((y + 1) / 2) áv",# + L((y + 1) / 2) and so

! (y, v) + L
"

1 + y
2

#
%

1
2

á((1 %y) áL(0) + (1 + y) áL(1))

= L
"

1
2

á(1 %y) á0 +
1
2

á(1 + y) á1
#

%
1
2

á((1 %y) áL(0) + (1 + y) áL(1))

+ 0, &y ' {% 1, 1} , &v ' R, (11)

from JensenÕs inequality (the conditional Bayes riskL is always concave (Reid & Williamson,
2010)). Now, if we consider the alternative use of Fenchel-Young inequality,

(%L)! (v",# ) %
1
2

áv",# + L
"

1
2

#
, (12)

then if we let

!( y) .= L
"

1
2

#
%

1
2

á((1 %y) áL(0) + (1 + y) áL(1)) , (13)

then we get

! (y, v) + !( y) %
y
2

áv",# , &y ' {% 1, 1} , &v ' R. (14)

It follows from (11) and (14),

! (y, v) + max
$

0, !( y) %
y
2

áv",#

%
, &y ' {% 1, 1} , &v ' R, (15)

and we get,&h ' RX, a ' XX,

E(X,Y)' D [! (y, h ) a(X))]

+ E(X,Y)' D

&
max

'
0, !( Y) %

Y
2

á(h ) a)",# (X)
()

+ max
'

0, E(X,Y)' D

&
!( Y) %

Y
2

á(h ) a(X)) ",#

)(

= max
'

0, L
"

1
2

#
%

1
2

áE(X,Y)' D [Y á(h ) a(X)) ",# + (1 %Y) áL(0) + (1 + Y) áL(1)]
(

= max
'

0, L
"

1
2

#
%

1
2

á
"

EX' P [# á((h ) a(X)) ",# + 2L(1))]
%EX' N [(1 %#) á((h ) a(X)) ",# %2L(0))]

#(

= max
'

0, L
"

1
2

#
%

1
2

á($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
(

,(16)
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with

$(Q, f, b, c) .=
!

X
bá(f (x ) + c)dQ(x ), (17)

and we recall

(h ) a)",# = ( %L&) ) " %1 ) h ) a. (18)

Hence,

min
h( H

E(X,Y)' D [max
a( A

! (Y, h ) a(X))]

+ min
h( H

max
a( A

E(X,Y)' D [! (Y, h ) a(X))] (19)

+ min
h( H

max
a( A

max
'

0, L
"

1
2

#
%

1
2

á($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
(

+ max
a( A

min
h( H

max
'

0, L
"

1
2

#
%

1
2

á($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
(

= max
a( A

max
'

0, min
h( H

"
L

"
1
2

#
%

1
2

á($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
#(

= max
a( A

max
'

0, L
"

1
2

#
%

1
2

ámax
h( H

($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
(

= max
a( A

"
L

"
1
2

#
%

1
2

ámax
h( H

($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
#

+

=
"

L
"

1
2

#
%

1
2

ámin
a( A

max
h( H

($(P, (h ) a)",# , #, 2L(1)) %$(N, (h ) a)",# , 1 %#, %2L(0)))
#

+

=
"

L
"

1
2

#
%

1
2

ámin
a( A

! g
H ,a(P, N, #, 2L(1), 2L(0))

#

+

=
"

! ) %
1
2

ámin
a( A

! g
H ,a(P, N, #, 2L(1), 2L(0))

#

+

=
"

! ) %
1
2

ámin
a( A

%a

#

+

, (20)

as claimed for the statement of Theorem 2 (we have letg .= ( %L&) ) " %1). Hence, if, for some
&' [0, 1],

, a ' A : ! g
H ,a(P, N, #, 2L(1), 2L(0)) - 2&á! ) , (21)

then

min
h( H

E(X,Y)' D [max
a( A

! (Y, h ) a(X))] + (! ) %&á! ) )+

= (1 %&) á! ) , (22)

which ends the proof of Corollary 3 if! is proper composite with link" . If it is proper canonical,
then(%L&) ) " %1 = Id and so! g

H ,a = ! H ,a in (21).
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Remark 1 Theorem 2 and Corollary 3 are very general, which naturally questions the optimality
of the condition in Corollary 3 to defeatH Ð and therefore the optimality of the Monge adversaries
to appear later. Inspecting their proof shows that suboptimality comes essentially from the use of
Fenchel-Young inequality in(12). There are ways to strenghten this result for subclasses of losses,
which might result in Þne in the characterisation of different but arguably more speciÞc adversaries.

3 Proof sketch of Corollary 5

Recall that%a = ! H ,a
*
P, N, 1

2, 2L(1), 2L(0)
+
. We prove the following, more general result which

does not assume# = 1/ 2 nor ! "
hard = 0.

Corollary 2 Suppose! is canonical proper and letH denote the unit ball of a reproducing kernel
Hilbert space (RKHS) of functions with reproducing kernel' . Denote

µa,Q
.=

!

X
' (a(x ), .)dQ(x ) (23)

the adversarial mean embedding ofa onQ. Then

2 á! H ,a(P, N, #, 2L(1), 2L(0))

= ! "
hard + *# áµa,P %(1 %#) áµa,N *H .

Proof It comes from the reproducing property ofH ,

2 á! H ,a(P, N, #, 2L(1), 2L(0))

= ! "
hard + max

h( H

'
# á

!

X
h ) a(x )dP(x ) %(1 %#) á

!

X
h ) a(x )dN (x )

(

= ! "
hard + max

h( H

'
# á

,
h,

!

X
' (a(x ), .)dP(x )

-

H

%(1 %#) á
,

h,
!

X
' (a(x ), .)dN (x )

-

H

(

= ! "
hard + max

h( H

.
.h, # áµa,P %(1 %#) áµa,N /H

/

= ! "
hard + *# áµa,P %(1 %#) áµa,N *H , (24)

as claimed, where the last equality holds for the unit ball.

4 Proof of Theorem 9

We Þrst show a Lemma giving some additional properties on our deÞnition os Lipschitzness.

Lemma 3 SupposeH is (u, v, K )-Lipschitz. Ifc is symmetric, then{ u ) h % v ) h} h( H is 2K -
Lipschitz. Ifc satisÞes the triangle inequality, thenu %v is bounded. Ifc satisÞes the identity of
indiscernibles, thenu - v.
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Proof If c is symmetric, then we just add two instances of(20) with x andy permuted, reorganize
and get:

u ) h(x ) %v ) h(y ) + u ) h(y ) %v ) h(x ) - K á(c(x , y ) + c(y , x )), &h ' H , &x , y ' X.

0 (u ) h %v ) h)(x ) %(u ) h %v ) h)(y ) - 2Kc(x , y ), &h ' H , &x , y ' X.

and we get the statement of the Lemma. Ifc satisÞes the triangle inequality, then we add again two
instances of (20) but this time as follows:

u ) h(x ) %v ) h(y ) + u ) h(y ) %v ) h(z) - K á(c(x , y ) + c(y , z)), &h ' H , &x , y , z ' X.

0 u ) h(x ) %v ) h(z) + !( y ) - Kc(x , z), &h ' H , &x , y , z ' X,

where!( y ) .= u ) h(y ) %v ) h(y ). If c is Þnite for at least one couple(x , z), then we cannot have
u%v unbounded in1hIm(h). Finally, if c satisÞes the identity of indiscernibles, then pickingx = y
in (20) yieldsu ) h(x ) %v ) h(x ) - 0, &h ' H , &x ' X and so(u %v)(1hIm(h)) 2 R+ 3 { 0} ,
which, disregarding the images inH for simplicity, yieldsu - v.

We now prove TheoremthOTA. In fact, we shall prove the following more general Theorem.

Theorem 4 Fix any& > 0 and proper loss! with link " . Suppose, c : X 4 X ( R such that:

(1) H is (# ág,(1 %#) ág, K )-Lipschitz with respect toc, whereg is deÞned in(14);

(2) A is ( -Monge efÞcient for costc on marginalsP, N for

( - 2 á
2&!) %! "

hard

K
. (25)

ThenH is &-defeated byA on ! .

Proof We have for alla ' A,

max
h( H

($(P, h ) a, #,2L(1)) %$(N, h ) a,1 %#, %2L(0)))

= ! "
hard +

1
2

ámax
h( H

" !

X
# ág ) h ) a(x )dP(x ) %

!

X
(1 %#) ág ) h ) a(x &)dN (x &)

#
, (26)

where we recallg .= ( %L&) ) " %1. Let us denote for short

! .= max
h( H

" !

X
# ág ) h ) a(x )dP(x ) %

!

X
(1 %#) ág ) h ) a(x &)dN (x &)

#
. (27)

H being(# ág,(1 %#) ág, K )-Lipschitz for costc, since

H 3 { h ' RX : #g ) h ) a(x ) %(1 %#)g ) h ) a(x &) - Kc(a(x ), a(x &)), &x , x &' X} ,

it comes after letting for short" .= #g ) h ) a, ) .= (1 %#)g ) h ) a,

! - max
!( x )%$(x ! )* Kc (a(x ),a(x ! ))

" !

X
"( x )dP(x ) %

!

X
) (x )dN (x )

#

- K á inf
µ( "( P,N )

!
c(a(x ), a(x &))dµ(x , x &). (28)
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See for example (Villani, 2009, Section 4) for the last inequality. Now, if some adversarya ' A is
( -Monge efÞcient for costc, then

K á inf
µ( "( P,N )

!
c(a(x ), a(x &))dµ(x , x &) - K(. (29)

From Theorem 2, if we wantH to be&-defeated byA, then it is sufÞcient from(26) thata satisÞes

! "
hard +

1
2

áK( - 2&!) , (30)

resulting in

( - 2 á
2&!) %! "

hard

K
, (31)

as claimed.

Remark 1 note that unless# = 1/ 2, c cannot be a distance in the general case fot Theorem 9:
indeed, the identity of indiscernibles and Lemma 2 enforce(1 %2#) ág + 0 and sog cannot take
both signs, which is impossible whenever! is canonical proper asg = Id in this case. We take it as
a potential difÞculty for the adversary which, we recall, cannot act on#.

Remark 2 In the light of recent results (Ciss«e et al., 2017; Cranko et al., 2018; Miyato et al.,
2018), there is an interesting corollary to Theorem 9 when# = 1/ 2 using a form of Lipschitz
continuity of thelink of the loss .

Corollary 5 Suppose loss! is proper with link" and furthermore its canonical link satisÞes, some
K " > 0:

(L)&(y) %(L)&(y&) - K " á |" (y) %" (y&)|, &y, y&' [0, 1].

Suppose furthermore that (i)# = 1/ 2, (ii) H is K h-Lipschitz with respect to some non-negativec
and (iii) A is ( -Monge efÞcient for costc on marginalsP, N for

( -
4&!) %2! "

hard

K "K h
. (32)

ThenH is &-defeated byA on ! .

Proof The domination condition on links,

(L)&(y) %(L)&(y&) - K " á |" (y) %" (y&)|, &y, y&' [0, 1], (33)

impliesg is Lipschitz and lettingy .= " %1 ) h ) a(x ), y& .= " %1 ) h ) a(x &), we obtain equivalently
g ) h ) a(x ) % g ) h ) a(x ) - K " á |h ) a(x ) % h ) a(x &)|, &x , x & ' X. But H is K h-Lipschitz
with respect to some non-negativec, so we have|h ) a(x ) %h ) a(x &)| - K hc(a(x ), a(x &)), and so
bringing these two inequalities together, we have from the proof of Theorem 9 that! now satisÞes

! -
K "K h

2
á inf

µ( "( P,N )

!
c(a(x ), a(x &))dµ(x , x &), (34)
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so to be&-defeated byA on ! , we now want thata satisÞes

! "
hard +

K "K h

2
á( - 2&!) , (35)

resulting in the statement of the Corollary.

5 Proof of Theorem 12

DenoteaJ .= a ) a ) ... ) a (J times). We have by deÞnition

C# (aJ , P, N) .= inf
µ( "( P,N )

!

X
*# ) aJ (x ) %# ) aJ (x &)*H dµ(x , x &)

= inf
µ( "( P,N )

!

X
*# ) a ) aJ %1(x ) %# ) a ) aJ %1(x &)*H dµ(x , x &) (36)

- (1 %* ) á inf
µ( "( P,N )

!

X
*# ) aJ %1(x ) %# ) aJ %1(x &)*H dµ(x , x &)

...

- (1 %* )J á inf
µ( "( P,N )

!

X
*#( x ) %#( x &)*H dµ(x , x &)

= (1 %*)J áW #
1 , (37)

where we have used the assumption thata is * -contractive and the deÞnition ofW #
1 . There remains

to bound the last line by( and solve forJ to get the statement of the Theorem. We can also stop at
(36) to conclude thatA is ( -Monge efÞcient for( = (1 %*) áW #

1 . The number of iterations forAJ

to be( -Monge efÞcient is obtained from (37) as

J +
1

log
0

1
1%%

1 álog
W #

1

(
, (38)

which gives the statement of the Theorem once we remark thatlog(1/ (1 %* )) + * .

6 Proof of Lemma 10

The proof follows from the observation that for anyx , x &in S,

*a(x ) %a(x &)* = +*x %x &* , (39)

where* .* is the metric ofX. Thus, lettinga denote a mixup tox + adversary for some+ ' [0, 1], we
haveC(a, P, N) = + áW1(dP,dN ), whereW1(dP,dN ) denotes the Wasserstein distance of order
1 between the class marginals.( > 0 being Þxed, all mixups tox + adversaries inA that are also
( -Monge efÞcient are those for which:

+ -
(

W1(dP,dN )
, (40)

and we get the statement of the Lemma.
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Figure 1: Visualising the toy example for the case, = 0.5. Clockwise from top left: (a) the
clean class conditional distributions, (b) the class distributions mapped by the adversarya, (c) the
transport costc under the adversarial mappinga, (d) the corresponding optimal transportµ.

7 Experiments

Figure 1 includes detailed plots for the, = 0.5 case of the numerical toy example.
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