
Revisiting revisits in trajectory recommendation
Aditya Krishna Menon, Dawei Chen, Lexing Xie, Cheng Soon Ong

The Australian National University Data61/CSIRO

{aditya.menon,u5708856,lexing.xie,chengsoon.ong}@anu.edu.au

ABSTRACT

Trajectory recommendation is the problem of recommending a

sequence of places in a city for a tourist to visit. It is strongly

desirable for the recommended sequence to avoid loops, as tourists

typically would not wish to revisit the same location. Given some

learned model that scores sequences, how can we then find the

highest-scoring sequence that is loop-free?

This paper studies this problem, with three contributions. First,

we detail three distinct approaches to the problem – graph-based

heuristics, integer linear programming, and list extensions of the

Viterbi algorithm – and qualitatively summarise their strengths

and weaknesses. Second, we explicate how two ostensibly different

approaches to the list Viterbi algorithm are in fact fundamentally

identical. Third, we conduct experiments on real-world trajectory

recommendation datasets to identify the tradeoffs imposed by each

of the three approaches.

Overall, our results indicate that a greedy graph-based heuristic

offer excellent performance and runtime, leading us to recommend

its use for removing loops at prediction time.

CCS CONCEPTS

• Information systems→ Recommender systems;

1 INTRODUCTION

A burgeoning sub-field of citizen-centric recommendation focusses

on suggesting travel routes in a city that a tourist might enjoy. This

goal encompasses at least three distinct problems:

(1) ranking all points of interest (POIs) in a city in a manner per-

sonalised to a tourist (e.g. a tourist to Sydney interested in

scenic views might have Opera House ≻ Darling Harbour
≻ Chinatown) [9, 10, 20, 21];

(2) recommending the next location a tourist might enjoy, given

the sequence of places they have visited thus far (e.g. given

Darling Harbour→Botanic Gardens, we might recommend

Quay Café) [5, 18, 22];
(3) recommending an entire sequence of POIs for a tourist, effec-

tively giving them a travel itinerary (e.g. Opera House→Quay
Café→Darling Harbour) [2, 8, 11–13].

Our focus in the present paper is problem setting (3), which we dub

“trajectory recommendation”.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CitRec, August 27, 2017, Como, Italy
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5370-0/17/08. . . $15.00

https://doi.org/10.1145/3127325.3127326

Effectively tackling trajectory recommendation poses a chal-

lenge: at training time, how can one design a model that can rec-

ommend sequences of POIs which are coherent as a whole? Merely

concatenating a tourists’ personalised top ranking POIs into a se-

quence might result in prohibitive travel (e.g. Opera House→Royal
National Park), or unacceptably homogeneous results (e.g. we

might recommend three restaurants in a row). This motivates ap-

proaches that ensure global cohesion of the predicted sequence. In

recent work, Chen et al. [4] showed that structured SVMs are one

such viable approach which outperform POI ranking approaches.

In this paper, we focus on a distinct but related challenge: at

prediction time, how can one recommend a sequence that does not

have loops? This is desirable because tourists would typically wish

to avoid revisiting a POI that has already been visited before. In

principle, this problem will not exist if one employs a suitably rich

model which learns to suppress sequences with loops. In practice,

one is often forced to compromise on model richness owing to

computational and sample complexity considerations. We thus

study this challenge, with the following contributions:

(C1) We detail three different approaches to the problem – graph-

based heuristics, integer linear programming, and list exten-

sions of the Viterbi algorithm – and qualitatively summarise

their strengths and weaknesses.

(C2) In the course of our analysis, we explicate how two ostensibly

different approaches to the list Viterbi algorithm [15, 19] are

in fact fundamentally identical.

(C3) We conduct experiments on real-world trajectory recom-

mendation datasets to identify the tradeoffs imposed by each

of the three approaches.

Overall, we find that all methods offer performance improvements

over naïvely predicting a sequence with loops, but that a greedy

graph-based heuristic offers excellent performance and runtime.

We thus recommend its use for removing loops at prediction time

over the more computationally demanding integer programming

and list Viterbi algorithms.

2 TRAJECTORY & PATH RECOMMENDATION

We now formalise the problem of interest and outline its challenges.

2.1 Trajectory recommendation

Fix some set P of points-of-interest (POIs) in a city. A trajectory1 is
any sequence of POIs, possibly containing loops (repeated POIs).

In the trajectory recommendation problem, we are given as input a

training set of historical tourists’ trajectories. From this, we wish to

design a trajectory recommender, which accepts a trajectory query
x = (s, l), comprising a start POI s ∈ P, and trip length l > 1, and

produces one or more sequences of l POIs starting from s .

1
In graph theory, this is also referred to as a walk.

https://doi.org/10.1145/3127325.3127326

Formally, let X
.
= P × {2, 3, . . .} be the set of possible queries,

Y
.
=
⋃∞
l=2

Pl be the set of all possible trajectories, and for fixed x ∈

X, Yx ⊂ Y be the set of trajectories that conform to the constraints

imposed by x, i.e. if x = (s, l) then Yx = {y ∈ Pl | y1 = s}. Then,
the trajectory recommendation problem has:

Input: training set

{(
x(i), y(i)

)}n
i=1

∈ (X × Y)n

Output: a trajectory recommender r : X → Y

One way to design a trajectory recommender is to find a (query,

trajectory) affinity function f : X × Y → R, and let

r (x)
.
= argmax

y∈Yx

f (x, y). (1)

Several choices of f are possible. Chen et al. [3] proposed to use f
given by a RankSVMmodel.While offering strong performance, this

has a conceptual disadvantage highlighted in the previous section:

it does not model global cohesion, and could result in solutions

such as recommending three restaurants in a row.

To overcome this, Chen et al. [4] proposed to use f given by a

structured SVM (SSVM), wherein f (x, y) = wTΦ(x, y) for a suitable
feature mapping Φ. When this feature mapping decomposes into

terms that depend only on adjacent elements in the sequence y
(akin to a linear-chain conditional random field), the optimisation

in Equation 1 can be solved with the classic Viterbi algorithm.

2.2 Path recommendation

We argue that the definition of trajectory recommendation is in-

complete for a simple reason: in most cases, a tourist will not want

to revisit the same POI. Instead, what is needed is to recommend

a path, i.e. a trajectory that does not have any repeated POIs. Let

Y ⊂ Y be the set of all possible paths, and for fixed x ∈ X, let Yx ⊂ Y

be the set of paths that conform to the constraints imposed by x.
We now wish to construct a path recommender r : X → Y via

r (x)
.
= argmax

y∈Yx

f (x, y). (2)

For f given by an SSVM, Equation 2 requires we depart from the

standard Viterbi algorithm, as the sequence in Equation 1 may well

have a loop.
2
There are two distinct modes of attack available:

(1) seek an approximate solution to the problem, via heuristics

that exploit a graph view of Equation 2.

(2) seek an exact solution to the problem, via integer linear

programming, or top-K extensions of the Viterbi algorithm.

While Chen et al. [4] suggested the latter exact approaches, they

did not formally compare their performance either qualitatively or

quantitatively; they did not detail the different top-K extensions of

the Viterbi algorithm and the connections thereof; and they did not

consider approximate approaches.

In the sequel, we thus detail the above approaches in more detail.

Figure 1 gives a schematic overview of these algorithms.

2
In SSVMs, this issue also arises during training [4], but we focus here only on

the prediction problem. See §7 for additional comments.

3 GRAPH-BASED HEURISTICS

To design approximations, it will be useful to view Equation 2 as a

graph optimisation problem for the case of structured SVMs with

pairwise potentials. Here, the score f (x, y) can be decomposed as

f (x, y) =
|y |∑
k=1

α(yk) +

|y |−1∑
k=1

β(yk ,yk+1
) (3)

for suitable unary and pairwise potentials α , β [4]. Consider then

a complete graph where the nodes are POIs, each node p ∈ P has

a score α(p), and each edge (p,p′) ∈ P2
has a score β(p,p′). Then,

Equation 2 is equivalently a problem of selecting l nodes whose
total sum of node and edge scores maximises Equation 3. We now

look at ways of approximately solving this selection problem.

3.1 Heuristic loop elimination

Perhaps the simplest approximate solution to Equation 2 is to

merely remove the first loop occurring in the standard Viterbi

solution (Equation 1). That is, if the Viterbi solution is (y1, . . . ,yl),
return the sub-sequence (y1, . . . ,yi−1) for the first index i where
yi appears in this sub-sequence. This has complexity dominated by

the Viterbi algorithm, viz. O(l · |P|2) for an input query x = (s, l).
From a graph perspective, this approach makes the directed sub-

graph induced by the Viterbi solution acyclic by breaking the first

cycle-inducing edge. This is sensible if sequences never escape the

first cycle, i.e. after the first repeated POI, there is no new POI.

We have indeed found this to be the case in our problem; more

generally, the problem of removing cycles is a special case of the

(NP-hard) minimum feedback arc-set problem [7, pg. 192].

This algorithm is appealing in its simplicity, but has at least two

drawbacks. First, it makes the questionable assumption that Equa-

tion 2 is solvable from the standard Viterbi solution alone. Second,

the solution violates the length constraint of the path recommenda-

tion problem. As a remedy, we can request the Viterbi algorithm to

return a sequence of longer length l ′ ∈ {l , l + 1, . . . , |P|}, and pick

the (smallest) l ′ for which the predicted length is closest to l .

3.2 Greedy path discovery

In light of the graph-based view, a natural approach to approxi-

mately solve Equation 2 is a greedy algorithm. Suppose we have al-

ready determined a partial path comprising distinct POIsy1, . . . ,yk .
Then, we can select the next candidate POI yk+1

as the node that

iteratively optimises Equation 3, subject to the constraint that it is

distinct from all other nodes in the current path; formally, we pick

yk+1
= argmax

p∈P−{y1, ...,yk }
α(p) + β(yk ,p).

This algorithm is faster than the above heuristic, with O(l · |P|)
complexity, but similarly has an unclear performance guarantee.

4 INTEGER LINEAR PROGRAMMING & TSP

One way to exactly solve Equation 2 is to observe its similarity to

the travelling salesman problem (TSP). Indeed, if the length l = |P|,

so that every POI is restricted to be visited once, then we exactly

get the TSP problem; however, for smaller l , we require visiting
only a subset of POIs, which is not a vanilla instance of TSP.

1 2 3

/

(a) LoopElim (§3.1).

1

2

3

1

2

3

. . .

/

/

/

(b) Greedy (§3.2).

1

2 3

4 5

6

(c) ILP (§4).

1 2

5 6

3

(d) List Viterbi (§5).

Figure 1: Schematics of different algorithms to return a loop-free prediction. Nodes such as 1 are selected by the algorithm,

with thick edges such as denoting the sequence ordering. LoopElim removes the loop from the Viterbi solution (here

the POI sequence (1, 2, 3, 1)), possibly returning a path of shorter length than requested; Greedy incrementally selects POIs

which have not been selected before, and locally maximises the sub-path score; ILP solves an integer linear program to find

the optimal length l path in a complete graph over POIs; ListViterbi finds where the second-best sequence diverges from the

standard Viterbi sequence ((1, 2, 3, 1) as before); if not loop-free, it finds where the third-best diverges from the second-best, etc.

Nonetheless, we may take inspiration from methods to solve

the TSP to attack our problem. In particular, we can formulate the

trip recommendation problem as an integer linear program (ILP), as
often done for the TSP [16]. Formally, given a starting location s
and the required trip length l , we find the best possible path via [4]

max

u,v

m∑
k=1

α(pk) ·
m∑
j=1

ujk +
m∑

j,k=1

ujk · β(pj ,pk)

s .t .
m∑
k=2

u
1k = 1, z(u)1 = 0, z(u)i ∈ {0, 1} (∀i ∈ {2, · · · ,m})

m∑
j,k=1

ujk = l − 1,

m∑
j=1

uj j = 0,

m∑
j=1

uji ≤ 1 (∀i ∈ {2, · · · ,m})

vj −vk + 1 ≤ (m − 1)(1 − ujk) (∀j,k ∈ {2, · · · ,m}).

Here, we index POIs such that s = p1 for brevity. The binary ujk
are true iff we visit pk immediately after visiting pj ; the integer
vj track the rank of pj ; and z(u)i

.
=
∑m
j=1

uji −
∑m
k=1

uik indicates

whether we end up at pi . The constraints ensure we output a path
of exactly l POIs; the last constraint in particular ensures we do not

have (disjoint) cycles, as per Miller et al. [14]. By reading off the

values of ujk , we can determine the predicted sequence.

An off-the-shelf solver (e.g. Gurobi) may be used on the ILP.

While ILPs have worst case exponential complexity, such solvers are

highly optimised and thus make many problem instances tractable.

The above ILP implicitly solves both the problem of selecting the

set of l POIs to recommend, and the problem of ordering them. We

could fix the set of POIs to recommend, e.g. by using the POIs in the

Viterbi solution, and then find the optimal ordering of these nodes.

However, we have found this to have only modest improvement

over the loop elimination heuristic of the previous section.

5 TOP-K SEQUENCES USING LIST VITERBI

The Viterbi algorithm finds the best scoring sequence in Equation

1, which may have loops. To find the best sequence without loops

in Equation 2, one can apply a list Viterbi algorithm to find not

just the single best sequence, but rather the top K best sequences.

By definition, the first such sequence that is loop free must be

the highest scoring sequence that does not have loops. We detail

existing approaches to solve the list Viterbi problem.

5.1 Parallel and serial list Viterbi algorithms

At a high level, there are two approaches to extend the Viterbi

algorithm to the top-K setting. The first approach is to keep track,

at each state, of the topK sub-sequences that end at this state; these

are known as parallel list Viterbi algorithms. Such algorithms date

back to at least Forney [6], but have the disadvantage of imposing a

non-trivial memory burden. Further, they are not applicable as-is in

our setting: we do not know in advance what value of K is suitable,

since we do not know the position of the best loop-free sequence.

The second approach is to more fundamentally modify how one

selects paths; these are known as serial list Viterbi algorithms. There

are at least two such well-known proposals in the context of hid-

den Markov models (HMMs). In the signal processing community,

Seshadri and Sundberg [19] proposed an algorithm that keeps track

of the “next-best” sequence terminating at each state in the current

list of best sequences. In the AI community, Nilsson and Goldberger

[15] proposed an algorithm that cleverly partitions the search space

into subsets of sequences that share a prefix with the current list of

best sequences. While derived in different communities, these two

algorithms are in fact only superficially different, as we now see.

5.2 Relating serial list Viterbi algorithms

The connection between the two list Viterbi algorithms is easiest

to see when finding the second-best sequence for an HMM. Sup-

pose we have an HMM with states St , observations Ot , transitions

a(i, j) = Pr(St+1 = j | St = i), and emissions b(i,k) = Pr(Ot = k |

St = i). Suppose s∗
1:T is the most likely length T sequence given

observations O1:T , and δ (j, t) is the value of the best sequence up
till position t ending at state j as computed by the Viterbi algorithm.

Our interest is in finding the second-best sequence with value

M
.
= maxS1:T ,s∗

1:T
Pr(S1:T ,O1:T). Seshadri and Sundberg [19] ob-

served thatM = ¯δT+1, where
¯δt has a Viterbi-like recurrence

¯δt
.
= Jt > 0K · max

{
maxi,s∗t−1

δ (i, t − 1) · a(i, s∗t) · b(s
∗
t ,Ot)

¯δt−1 · a(s
∗
t−1
, s∗t) · b(s

∗
t ,Ot).

(4)

Intuitively,
¯δt finds the value of the second-best sequence that

merges with the best sequence by at least time t .

Dataset # Traj # POIs # Queries

Glasgow 351 25 64

Osaka 186 26 47

Toronto 977 27 99

Table 1: Statistics of trajectory datasets: the number of trajec-

tories (# Traj), POIs (# POIs), queries (# Queries). Note that a

distinct query may be associated with multiple trajectories.

Nilsson and Goldberger [15] observed thatM = maxt ρ̂t , where

ρ̂t
.
= max

i,s∗t
max

St+1:T
Pr(S1:t−1 = s

∗
1:t−1
, St = i, St+1:T ,O1:T).

Intuitively, ρ̂t finds the value of the second-best sequence that first
deviates from the best sequence exactly at time t . One can compute

ρ̂t using ηi, j,t
.
= maxS : St−1=i,St=j Pr(S1:T ,O1:T) [15], which in

turn can be computed from the “backward” analogue of δ .
To connect the two approaches, by unrolling the recurrence in

Equation 4, and by definition of δ , we have M = maxt µ̂t where

µ̂t
.
=

[T∏
k=t+2

a(s∗k−1
, s∗k) · b(s

∗
k ,Ok)

]
· max

i,s∗t
δ (i, t) · a(i, s∗t+1

) · b(s∗t+1
,Ot+1)

= max

i,s∗t
max

S1:t−1

Pr(S1:t−1, St = i, St+1:T = s
∗
t+1:T ,O1:T);

i.e., the same quantities are computed, except that the former fixes

the suffix of the candidate sequence, while the latter fixes the prefix.

A similar analysis holds in the case of finding theKth best sequence.
The complexity of either of the above algorithms is O(l · |P|2 + l ·

|P| ·K +l ·K · log(l ·K)) [15]. This is tractable, but we emphasise that

the smallest K guaranteeing we obtain a path is unknown a-priori.

6 EMPIRICAL COMPARISON

We now empirically compare the methods discussed above, to get a

firmer sense of their tradeoffs. We focus on path recommendation

tasks where an SSVM is learned to score sequences. (We refer the

reader to Chen et al. [4] for a detailed comparison of SSVM to other

baselines, e.g. RankSVM.) We then apply each of the above methods

to (approximately) solve the inference problem of Equation 2.

6.1 Experimental setup

Following Chen et al. [3, 4], we work with data extracted from

Flickr photos for the cities of Glasgow, Osaka and Toronto [3, 11].

Each dataset comprises of a list of trajectories as visited by various

Flickr users. Table 1 summarises the statistics of each dataset.

To produce a recommendation, we use the aforementioned in-

ference methods (named LoopElim(++), Greedy, ILP, ListViterbi)

as well as standard inference (Viterbi). LoopElim processes the

Viterbi solution for the query length l , while LoopElim++ processes

the solutions for all longer lengths l ′, as described in §3.1.

We evaluate each algorithm using leave-one-query-out cross

validation, i.e. in each round, we hold out all trajectories for a

distinct query x in the dataset. To measure performance, we use the

F1 score on points [11], which computes F1-score on the predicted

versus seen points without considering their relative order, and the

F1 score on pairs [3], which computes the F1-score on all ordered

pairs in the predicted versus ground truth sequence.

6.2 Results and discussion

We now address several key questions relating to the tradeoffs of

the various methods considered.

How often does the top-scoring sequence have loops? It

is first of interest to confirm that even for the powerful SSVM

model, the top-scoring sequence as found by the Viterbi algo-

rithm often contain loops. Indeed, we find that on the (Osaka,
Glasgow, Toronto) datasets, the top-scoring sequence for (23.9%,

31.2%, 48.5%) respectively of all queries have loops.

How important is it to remove loops?Having confirmed that

loops in the top-scoring sequence are an issue, it is now of interest

to establish that removing such loops during prediction is in fact

important. This is confirmed in Tables 2 – 3, where we see that

there can be as much as a 17% improvement in performance over

the Viterbi baseline. These improvements are over all queries,

including those where the Viterbi algorithm does not have loops.

Restricting to those queries where there are loops, Tables 4b – 5b

show that the improvements are dramatic, being as high as 50%.

How reliably can LoopElim(++) get the desired length? Re-

call that LoopElim and its variant LoopElim++ may result in a path

of the wrong length. Figure 2 shows that for a significant fraction

of queries, these algorithms will output a different length path to

that specified in the query, and are thus not suitable if we strictly

enforce a length constraint. Of the two, LoopElim++ outputs more

trajectories of the correct length, as per design.

How reliably can LoopElim(++) predict a good path?Assum-

ing one can overlook LoopElim(++) producing a path of possibly

incorrect length, it is of interest as to how well they perform. Tables

2 – 3 show that the heuristic often grossly underperforms com-

pared to the exact ILP and ListViterbi approaches. (Being exact,

the latter methods have nearly identical accuracy, with occasional

differences owing to ties.) Curiously, LoopElim++, while producing

paths of length closer to the original, actually performs slightly

worse than the naïve LoopElim on the larger Toronto dataset.
Howreliably canGreedypredict a good path?Unlike LoopE-

lim(++), the Greedy method is guaranteed to produce a path of the

correct length. Surprisingly, it also performs very well compared

to the ListViterbi and ILP methods, offering significant improve-

ments over these methods on the larger Glasgow and Toronto
datasets, while being competitive on the smaller Osaka dataset.

How does trajectory length influence accuracy? The above

analyses the accuracy over all queries, and over queries where

Viterbi outputs a loop. It is of interest to partition the set of queries

based on the length of the requested trajectory. Intuitively, we

expect that the longer the requested trajectory, the less accurate

all methods will fare; this is because longer trajectories imply an

exponentially large search space. (Indeed, on Toronto, for a query
with length 13, the first 5 million sequences have loops!)

Figure 3 confirms this intuition: on all datasets, and for all meth-

ods, a longer trajectory length implies significantly worse perfor-

mance in absolute terms. Interestingly, the relative improvements of

all methods over Viterbi are either consistent or actually increase
with longer trajectories; this is reassuring, and justifies the effort

spent in removing loops. Of further interest is that the Greedy

heuristic remains dominant for longer trajectories on the Glasgow
and Toronto datasets.

Table 2: Point F1 cross-validation scores.

(a) Raw scores.

LoopElim LoopElim++ Greedy ILP ListViterbi Viterbi

Osaka 0.635 ± 0.039 0.639 ± 0.038 0.626 ± 0.040 0.638 ± 0.039 0.638 ± 0.039 0.622 ± 0.040

Glasgow 0.718 ± 0.030 0.721 ± 0.030 0.751 ± 0.028 0.741 ± 0.028 0.741 ± 0.028 0.689 ± 0.032

Toronto 0.699 ± 0.027 0.696 ± 0.027 0.756 ± 0.024 0.754 ± 0.023 0.754 ± 0.023 0.651 ± 0.030

(b) Improvement over Viterbi.

LoopElim LoopElim++ Greedy ILP ListViterbi

Osaka 2.0% 2.7% 0.5% 2.6% 2.6%

Glasgow 4.2% 4.6% 9.0% 7.6% 7.6%

Toronto 7.3% 6.8% 16.0% 15.7% 15.7%

Table 3: Pair F1 cross-validation scores.

(a) Raw scores.

LoopElim LoopElim++ Greedy ILP ListViterbi Viterbi

Osaka 0.369 ± 0.059 0.373 ± 0.059 0.369 ± 0.059 0.375 ± 0.059 0.375 ± 0.059 0.364 ± 0.060

Glasgow 0.480 ± 0.049 0.485 ± 0.049 0.522 ± 0.048 0.506 ± 0.048 0.508 ± 0.048 0.461 ± 0.050

Toronto 0.490 ± 0.041 0.489 ± 0.041 0.543 ± 0.038 0.530 ± 0.037 0.529 ± 0.037 0.463 ± 0.041

(b) Improvement over Viterbi.

LoopElim LoopElim++ Greedy ILP ListViterbi

Osaka 1.4% 2.4% 1.4% 3.0% 3.0%

Glasgow 4.1% 5.1% 13.1% 9.7% 10.1%

Toronto 5.8% 5.7% 17.2% 14.5% 14.4%

Table 4: Point F1 cross-validation scores of queries where Viterbi recommendation has a loop.

(a) Raw scores.

LoopElim LoopElim++ Greedy ILP ListViterbi Viterbi

Osaka 0.389 ± 0.038 0.408 ± 0.038 0.374 ± 0.046 0.405 ± 0.042 0.405 ± 0.042 0.338 ± 0.034

Glasgow 0.569 ± 0.045 0.577 ± 0.045 0.658 ± 0.044 0.644 ± 0.040 0.644 ± 0.040 0.476 ± 0.040

Toronto 0.540 ± 0.030 0.534 ± 0.030 0.657 ± 0.027 0.654 ± 0.025 0.654 ± 0.025 0.443 ± 0.028

(b) Improvement over Viterbi.

LoopElim LoopElim++ Greedy ILP ListViterbi

Osaka 15.1% 20.9% 10.8% 19.7% 19.7%

Glasgow 19.4% 21.3% 38.2% 35.2% 35.2%

Toronto 22.1% 20.7% 48.5% 47.8% 47.7%

Table 5: Pair F1 cross-validation scores of queries where Viterbi recommendation has a loop.

(a) Raw scores.

LoopElim LoopElim++ Greedy ILP ListViterbi Viterbi

Osaka 0.088 ± 0.026 0.104 ± 0.026 0.103 ± 0.034 0.112 ± 0.030 0.112 ± 0.030 0.067 ± 0.020

Glasgow 0.261 ± 0.047 0.277 ± 0.052 0.378 ± 0.066 0.345 ± 0.055 0.350 ± 0.054 0.201 ± 0.039

Toronto 0.236 ± 0.031 0.235 ± 0.030 0.352 ± 0.032 0.318 ± 0.024 0.317 ± 0.023 0.180 ± 0.025

(b) Improvement over Viterbi.

LoopElim LoopElim++ Greedy ILP ListViterbi

Osaka 32.7% 55.4% 54.5% 68.2% 68.2%

Glasgow 29.9% 37.6% 88.1% 71.4% 73.9%

Toronto 30.9% 30.1% 95.0% 76.5% 76.0%

How fast are the variousmethods?As expected, the heuristic

LoopElim and Greedy algorithms have the fastest runtime, being

on the order of milliseconds per query even for long trajectories

(Figure 4). The Greedy algorithm is the faster of the two, as it

does not even require running the standard Viterbi algorithm. The

LoopElim++ variant is much slower than LoopElim, as it needs to

perform the Viterbi calculation multiple times.

The exact methods are by comparison slower, especially for

medium length trajectories. Amongst these methods, for shorter

trajectories, the ListViterbi approach is to be preferred; however,

for longer trajectories, the ILP approach is faster. The reason for

the ListViterbi to suffer at longer trajectories is simply because

this creates an exponential increase in the number of available

choices, which must be searched through serially. Of interest is that

ILP approach has runtime largely independent of the trajectory

length. This indicates the branch-and-bound as well as cutting plane

underpinnings of these solvers are highly scalable.

Overall, the Greedy algorithm is at least competitive, and often

more accurate than exact methods; it is also significantly faster.

Thus, for recommending paths, we recommend this algorithm.

7 DISCUSSION AND CONCLUSION

We formalised the problem of eliminating loops when recommend-

ing trajectories to visitors in a city, and surveyed three distinct

approaches to the problem – graph-based heuristics, list extensions

of the Viterbi algorithm, and integer linear programming. We ex-

plicated how two ostensibly different approaches to the list Viterbi

algorithm [15, 19] are in fact fundamentally identical.

In experiments on real-world datasets, a greedy graph-based

heuristic offered excellent performance and runtime. We thus rec-

ommend its use for removing loops at prediction time over the

more involved integer programming and list Viterbi algorithms.

As a caveat on the applicability of the greedy algorithm, we

note that the problem of removing loops also arises during training

SSVMs in the loss-augmented inference step [4]. The list Viterbi

algorithm has been demonstrated useful in this context; it is unclear

whether the same will be true of the approximate greedy algorithm,

as it will necessarily lead to sub-optimal solutions.

As future work, it is of interest to extend the greedy algorithm

to the top-K evaluation setting of Chen et al. [4], wherein the

recommender produces a list of paths to be considered. A natural

strategy would be to augment the algorithm with a beam search.

Further, the idea of modifying the standard Viterbi inference

problem (Equation 1) has other applications, such as ensuring diver-

sity in the predicted ranking. Such problems have been studied in

contexts such as information retrieval [1] and computer vision [17],

and their study would be interesting in trajectory recommendation.

More broadly, investigation of efficient means of ensuring global

cohesion – e.g. preventing homogeneous results – is an important

direction for the advancement of citizen-centric recommendation.

REFERENCES

[1] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based

Reranking for Reordering Documents and Producing Summaries (SIGIR ’98).
[2] Chao Chen, Daqing Zhang, Bin Guo, Xiaojuan Ma, Gang Pan, and Zhaohui

Wu. 2015. TripPlanner: Personalized trip planning leveraging heterogeneous

crowdsourced digital footprints. IEEE Transactions on Intelligent Transportation
Systems 16, 3 (2015), 1259–1273.

[3] Dawei Chen, Cheng Soon Ong, and Lexing Xie. 2016. Learning Points and Routes

to Recommend Trajectories (CIKM ’16).

Figure 2: Absolute difference between recommended and required sequence length for LoopElim(++).

Figure 3: Accuracy versus trajectory length for all inference algorithms.

Figure 4: Prediction time versus trajectory length for all inference algorithms.

[4] Dawei Chen, Lexing Xie, Aditya Krishna Menon, and Cheng Soon Ong. 2017.

Structured Recommendation. CoRR abs/1706.09067 (2017). https:arxiv.org/abs/

1706.09067

[5] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. 2013. Where you like

to go next: Successive point-of-interest recommendation (IJCAI ’13). 2605–2611.
[6] G. D. Forney. 1973. The Viterbi algorithm. IEEE 61, 3 (March 1973), 268–278.

[7] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.

[8] Aristides Gionis, Theodoros Lappas, Konstantinos Pelechrinis, and Evimaria Terzi.

2014. Customized tour recommendations in urban areas (WSDM ’14). 313–322.
[9] Hsun-Ping Hsieh and Cheng-Te Li. 2014. Mining and Planning Time-aware

Routes from Check-in Data (CIKM ’14). 481–490.
[10] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong

Rui. 2014. GeoMF: Joint geographical modeling and matrix factorization for

point-of-interest recommendation (KDD ’14). 831–840.
[11] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera.

2015. Personalized tour recommendation based on user interests and points of

interest visit durations (IJCAI ’15).
[12] Eric Hsueh-Chan Lu, Ching-Yu Chen, and Vincent S Tseng. 2012. Personalized trip

recommendation with multiple constraints by mining user check-in behaviors

(SIGSPATIAL ’12). 209–218.

[13] X. Lu, C. Wang, J. M. Yang, Y. Pang, and L. Zhang. 2010. Photo2Trip: Generating

Travel Routes from Geo-tagged Photos for Trip Planning (MM ’10).
[14] C. E. Miller, A. W. Tucker, and R. A. Zemlin. 1960. Integer Programming Formu-

lation of Traveling Salesman Problems. J. ACM 7, 4 (Oct. 1960), 326–329.

[15] Dennis Nilsson and Jacob Goldberger. 2001. Sequentially finding the N-best list

in hidden Markov models (IJCAI ’01).
[16] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization:

algorithms and complexity. Dover Publications. 308–309 pages.
[17] Dennis Park and Deva Ramanan. 2011. N-best Maximal Decoders for Part Models

(ICCV ’11). IEEE, 2627–2634.
[18] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. 2010. Factorizing Personal-

ized Markov Chains for Next-basket Recommendation (WWW ’10). 811–820.
[19] Nambirajan Seshadri and Carl-Erik Sundberg. 1994. List Viterbi decoding algo-

rithms with applications. IEEE Transactions on Communications 42, 234 (1994).
[20] Y. Shi, P. Serdyukov, A. Hanjalic, and M. Larson. 2011. Personalized Landmark

Recommendation Based on Geotags from Photo Sharing Sites (ICWSM ’11).
[21] Quan Yuan, Gao Cong, and Aixin Sun. 2014. Graph-based point-of-interest

recommendation with geographical and temporal influences (CIKM ’14).
[22] W. Zhang and J. Wang. 2015. Location and Time Aware Social Collaborative

Retrieval for New Successive Point-of-Interest Recommendation (CIKM ’15).
1221–1230.

https:arxiv.org/abs/1706.09067
https:arxiv.org/abs/1706.09067

	Abstract
	1 Introduction
	2 Trajectory & path recommendation
	2.1 Trajectory recommendation
	2.2 Path recommendation

	3 Graph-based heuristics
	3.1 Heuristic loop elimination
	3.2 Greedy path discovery

	4 Integer Linear Programming & TSP
	5 Top-k Sequences using List Viterbi
	5.1 Parallel and serial list Viterbi algorithms
	5.2 Relating serial list Viterbi algorithms

	6 Empirical comparison
	6.1 Experimental setup
	6.2 Results and discussion

	7 Discussion and Conclusion
	References

