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Elders past and present.




What is the distribution of running speeds?

o ‘ | a group of academics running a
marathon while holding a
microscope, anime style (DALL-E)
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Allen, Dechow, Pope, Wu (2016)
Reference-Dependent Preferences: Evidence from Marathon Runners
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e What is data?

* How to deal with non-tabular data?
 Case studies in environmental observation (microscope, satellite, computer)

e Where does data come from?
 Case study in genome biology (organism)

e Opportunities and challenges for data science



A fake HR database

Name Gender Degree Postcode Age Annual salary

Aditya M MSc W21BG 36 89563
Bob M PhD EC1A1BA 47 123543
Chloe F BEcon SWI1AIBH 26 23989
Daisuke M BSc SE207AT 68 138769
Elisabeth F MBA SE10AA 33 113888
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Data in numerical format

Gender ID Degree Latitude Longitude  Age  Annual Salary

(in degrees) (in degrees) (in thousands)
-1 51.5073 0.1290 36 89.563
-1 51.5074 0.1275 47 123.543
+1 51.5071 0.1278 26 23.989
-1 51.5075 0.1281 68 138.769

+1 51.5074 0.1278 33 113.888
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Predict salary given age (ML is about prediction)
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Gender ID  Degree Latitude Longitude Annual Salary
(in degrees)  (in degrees (in thousands)

2 51.5073 0.1290 89.563

3 51.5074 0.1275 123.543

1 51.5071 0.1278 23.989

1 51.5075 0.1281 138.769

2 51.5074 0.1278 113.888
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Who we are

Australia’s national science agency
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Global megatrends in data and Al

Australia’s National
Science Agency

Our Future World

Globe ds impacting the way we live

5. Diving into digital: the pandemic-fuelled a boom in digitisation, with teleworking,
telehealth, online shopping and digital currencies becoming mainstream. Forty percent
of Australians now work remotely on a regular basis and the future demand for digital
workers expected to increase by 79% from 2020 to 2025.

6. Increasingly autonomous: there has been an explosion in artificial intelligence (Al)

e discoveries and applications across practically all industry sectors over the past several
years. Within the science domain the use of Al is rising with the number of peer-
reviewed Al publications increasing nearly 12 times from 2000 to 2019.

https://www.csiro.au/en/research/technology-space/data/our-future-world



@ MLAI Future Science Platform

How to use prediction to help perform scientific discovery?

30 postdoc researchers

10 senior scientists Observation

1 vision

. . Data % _W fédge
Machine learning for Ll -
scientific discovery

Experiments
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Gender ID  Degree Latitude Longitude Annual Salary
(in degrees)  (in degrees) (in thousands)
51.5073 0.1290 89.563
51.5074 0.1275 123.543

51.5075 0.1281 138.769

2
3
1 51.5071 0.1278 23.989
1
2 51.5074 0.1278 113.888
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Towards automated detection of =
harmful algae and toxic blooms g A

* Microscopy on water samples D
* Computer vision N I
* Create bounding boxes Viv Rolland
* Classify algae species

https://blog.csiro.au/using-artificial-
intelligence-to-detect-harmful-algae/



* Damaging impact on the environment and aquatic organisms

* 2012 - Tasmanian east coast - dinoflagellate Alexandrium catenella closed the seafood industry

e 2016 - Murray Darling River — toxic blue-green algae impacted drinking water, agriculture or recreation
e 2018/19 - Murray Darling River - toxic blue-green algae resulted in high fish mortalities

Héférosigma akishiwo bloom, photo by V. Trainer, NOAA



Model Training / Evaluation

OPyTorch < NVIDIA.

ZEISS Axio Observer

LESd 4

CytoBuoy CytoSense

Data
Acquisition



Mask R-CNN Results — Mixed Species Assemblage




@ What is a map?

Modern maps augment our understanding of events

Electronic Multi modal prediction

Geoscience
Australia

Samuel Dunn (1794) i @

South Yokt
Albert Park I \
. Prahran Market )

Richmond Station

&, Live: As busy as it gets >
@ Moreinfo | € Directions | [] save

IR (SIS (T € Canberra Times

The Guardian (25/2/21) (11/3/21)
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Plant biodiversity mapping in
Australia with satellite imagery

* Diversity of plants is key in maintaining stability
and productivity of ecosystems

* Spaceborne remote sensing

Y. Guo, K. Mokany, C. Ong, P. Moghadam, S. Ferrier, and S. R. Levick (2022). }

Peyman
Quantitative assessment of DESIS hyperspectral data for plant biodiversity estimation in Australia. ‘M u had
IGARSS 2022. oghadam






Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.




Study Area

We focused on two regions in southeast Australia

- Southern Tablelands
- Snowy Mountains

Southern Tablelands

Snowy Mountains

Number of 44 29
Samples
Geo-extent 34°12'26"”-34°39°07"S 35°43'58”-36°16’30"S

150°05’57”-150°40'51"E

148°23'16”-148°39'02"E

Sampling Time

Feb 19, 2017~Dec 07, 2017

Feb 24, 2016~Dec 13, 2017

Plot Size

400 sgqm

400 sg m

Southern &y

Tablelands, /"~

Canberra

Snowy
Mountains




Plant Species Richness (Alpha Diversity)




Spectral Reflectance for Low, Intermediate, and High Species Richness Plots
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Mapping Result 2014

Key Info:

(1) > 70k ground truth
samples in total over
Australia

(2) Time of survey
ranges from 1986 to

date

Species Richness

| i
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Deep learning provides tools to create embeddings

: Bounding box,
— Category
— Real value
o “Predictor” Labels
Input Image Patch Ve Cto r
data

Representation
Raw learning
data
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A Spatio-Temporal Neural Network

Forecasting Approach for
Emulation of Firefront Models

e Use domain knowledge
* Evolution of spatial information

* More efficient ,
* Predictive uncertainty ﬁigg’:
* Enable scenario planning e etrs

N B
\
[\
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Spark

Weather timeseries

Fuel Class

Height-map

Wildfire simulation toolkit
https://research.csiro.au/spark/
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Model emulation

Dataset
E g Inference Training
» [e  eoco ] Y
S (e ess ) 00 I >
r (e cCee] -y
(e eso ]
-_-
Simulations

Predictions

Inference

Observations ::

Emulation model Benefits:

* More efficient
* Predictive uncertainty
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Observation

Knowledge

Experiments
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Adaptive design

* Genomic sequencing revolution
e Fast and cheap
* Portable

* Biological factories
* Drug design
* Alternative foods

Which genome should we grow?
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Genetic Device Design

* -

IPTG

l Label

pLlacO-1 Investigated RBS -

GFP

TTTAAGANNNNNNTATACATATG
-20 Feature -1



@ & MLAIaugmented SynBio

* Working definition of ‘synthetic biology’:
The design and construction of DNA-encoded parts,
devices, machines, and organisms; and their
application for useful purposes.
* Experimental science domains
* Integrative Biological Modelling
* Engineering Novel Biological Components
* Assembling Novel Biosystems
e Application areas
* Mosquito borne diseases
* Bacterial biofilms
* Chemical synthesis using yeast

https://research.csiro.au/synthetic-biology-fsp
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Still too many options to try! .
8

» Each option has a measurable outcome geeec 2
v >

* Efficacy of drug &\m»;) -0.6 L:

* Amount of protein .

* Study conditions limit the precision we can measure == = 0.4 |
0.2 \

-

* Multi armed bandits %
¢ Maximise outcomes ﬂ,u’ESL

* Trade of exploration and exploitation i

The Boat House
000080 310
Australian - $$$$



=", Maciej Holgfvi®®
Mengyan Zhang, ANU ourish'Labs Zumpe, SynBio

1. A (Bayesian) regression
algorithm which predicts both Gaussian Process Regression ‘ LEARN
— Mean (aka Kriging)

— Uncertainty

Multiarmed Bandits Algorithms:
2. An online/batch algorithm which B Upper Confidence Bound EEE) DESIGN

recommends sequences to design
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Al recommends good designs

Zhang, Holowko, Hayman Zumpe, and Ong,
Machine learning guided design for ribosome binding site.

ACS Synthetic Biology, 2022



@ Exploration-Exploitation Trade-off
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What is deep learning?

e Current progress is driven by
benchmarks

» Categories are slippery
e Define your tasks carefully

Al and the Everything in the Whole Wide World
Benchmark

Inioluwa Deborah Raji Emily M. Bender Amandalynne Paullada
Mozilla Foundation, UC Berkeley = Department of Linguistics ~ Department of Linguistics
rajiinio@berkeley.edu University of Washington University of Washington

Emily Denton Alex Hanna
Google Research Google Research




@ Opportunities and Challenges

Causality
Big data paradox

Theoretical

Computability
Responsible Al

Empirical !
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Responsible Al

* Predict based on observations

* Observations may not be
suitable for the task

* Task may be poorly specified

MATH DESTRUCTION -
o V

s

— =

*

=" HOW BIG DATA INCREASES INEQUALITY =
7 AND THREATENS DEMOCRACY

L CATHY O'NEIL X

/ “Fascinating ond deeply disturbing”
TUYAL WOAN WARARI, GUARDIAN §OOCH OF fui TEAR
/

/o LN\

Review into bias

S

in algorithmic
decision-making
November 2020

Centre for
Data Ethics
and Innovation
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@ Computability A

e Scaling laws still growing +":.*:;//

* Some exponential time fra 31 “‘@»fr
problems can be solved 22 e
efficiently = 100M 300P|\grar;2ters38 6B

 Compositions and
backpropagation

Machine learning for combinatorial optimization: A methodological
tour d’horizon

Yoshua Bengio®P, Andrea Lodi®"*, Antoine Prouvost®P

There and Back Agam European Journal of Operational Research

; A Tale of Slopes and Expectations
. _ |ARTIFICIAL INTELLIGENCE
eng Soon Uung arc Feter Deisenro
Data61, CSIRO University College London I N KN OT TH EO RY AM R
chengsoon. ong@anu.edu.au m.deisenroth@ucl.ac.uk AUTHOR: C. Adams :

= THE ASSOCIATION for
] ,@ChengSoonOng Wempd37? MATHEMATICAL RESEARCH

EDITOR/ART : R. Ghrist :

NeurlPS Tutorial, December 2020
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Big data paradox

 Observation affects data

e Law of large populations
* US elections 2016
e Sample size : n=2.3m = 400

* Adaptive experiments result in
non-independent data

Statistical paradises and paradoxes in big data
(): Law of large populations, big data paradox,
and the 2016 US presidential election

Xiao-Li Meng THEA:;INALS
APPLIED

STATISTICS

Adaptive Design Clinical Trials for Drugs
and Biologics Guidance for Industry

DECEMBER 2019

ipZY U.S. FOOD & DRUG

ADMINISTRATION




& CAUSALITY CAUSAL
INFERENCE

FOR
STATISTICS,
SOCIAL,

T SECOND EDITION

Causality

BIOMEDICAL
SCIENCES

* Reinvent the language of — .
MODELS, REASONING,

statistical inference
JUDEA PEARL

JudeaPearl @

& Dana Mackenzie

T'h .e‘ Jonas Peters, Dominik Janzing, and Bernhard Schélkopf
= 0. Elements of
BOO Causal Inference
2 n Z " E Foundations and Learning Algorithms
n ¢ Wooderful ...
A o Illunl'l‘l‘\;:'n!x
Daaniel
. Kahneman
The New Science
of Cause and Effect




@ \What is a scientific instrument?

How to use prediction to help perform scientific discovery?

 Scientific discovery has two phases Observation
* Observation
* Experimentation

e Non-tabular data Data-

* Deep learning to find good embeddings

* Model complex labels Experiments
* Include domain knowledge

* Exploration-exploitation tradeoff
* Use knowledge to measure better data

Causality

Big data paradox
Computability
Responsible Al

>

Theoretical

cheng-soon.ong@data61.csiro.au

Empirical


https://research.csiro.au/mlai-fsp/
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